
Expiration Classes for Implicit Memory
Management

Magisterarbeit

zur Erlangung des Diplomgrades
an der Naturwissenschaftlichen Fakultät der

Paris-Lodron Universität Salzburg

eingereicht von

Andreas Haas, Bakk techn.

Gutachter: Univ. Prof. Dr. Ing. Dipl. Inform. Christoph Kirsch

Fachbereich: Computer Science

Salzburg, August 2009

Danksagung

Den nachfolgenden Personen möchte ich an dieser Stelle danken:

Meinem Betreuer, Professor Christoph Kirsch, der immer Zeit für mich hatte

und mich bestens unterstützt hat.

Ana Sokolova und Hannes Payer, mit denen ich viel über meine Arbeit disku-

tiert habe, und von denen ich viel gelernt habe.

Meiner Freundin Theresa und meinem Bruder Stefan, die meinem Englisch

sehr auf die Sprünge geholfen haben.

Ich danke meinen Eltern, Bernhard und Michaela, die mich stets unterstützt

haben.

Zuletzt möchte ich mich noch bei meinemMitbewohner, Andreas Schönegger,

bedanken, der mich während des ganzen Studiums begleitet hat und mit dem

ich an vielen Projekten gearbeitet habe.

I

Abstract

Expiration classes are a concept to analyze memory management

systems. It reveals the costs and the source of costs. Explicit memory

management, garbage collection, region-based memory management

and cyclic allocation are analyzed in this master thesis. Furthermore,

we present AGC, a new memory management system which combines

garbage collection with cyclic allocation. Cyclic allocation has very

good timing properties and predictable space consumption, but it is

hard to use. On the other hand, garbage collection is very convenient,

but it has some unwanted side e�ects, like long pause times. AGC

can use the advantage of both systems, with only small overhead.

Benchmarks show that AGC is competitive to other garbage collected

systems.

II

Contents

I Introduction 1

1 Introduction 1

1.1 Outlining of this Thesis . 2

2 Memory Management 4

3 System Properties 9

3.1 Time speci�c properties . 9

3.2 Space speci�c properties . 11

II Concepts 14

4 Expiration Class 14

4.1 Explicit Memory Management 17

4.1.1 Explicit Memory Management using a simple free()-

statement . 18

4.1.2 Region-based Explicit Memory Management 18

4.2 Implicit Memory Management: Garbage Collection 20

4.2.1 Tracing Garbage Collector 20

4.2.2 Reference Counting Garbage Collector 22

4.2.3 Garbage Collection in general 25

4.3 Implicit Region-based Memory Management 27

4.4 Cyclic Memory Allocation . 28

4.5 Hybrid Memory Management Systems 30

4.6 Summary . 31

5 AGC: Conceptual Overview 33

5.1 Expiration Classes and Expiration Events 33

5.2 Memory Partitioning . 34

5.3 Reference Handling . 35

5.4 Additional-Root Set . 37

III

5.5 Delayed Deallocation . 38

5.6 User input . 39

5.7 Properties of the System . 40

5.7.1 Performance . 40

5.7.2 Correctness . 41

5.7.3 Memory Consumption 42

5.8 Summary . 43

6 Other Hybrid Memory Management Systems 44

6.1 Cyclone - Memory Management 44

6.2 Digital Mars D - Memory Management 45

6.3 Regions supported by a Garbage Collector 46

III Implementation 47

7 Implementation Environment 47

7.1 Introduction of Java . 47

7.2 Virtual Machine . 48

7.3 Jikes RVM . 49

8 AGC: Implementation 52

8.1 Initial System . 52

8.2 User Input . 52

8.3 Memory Partitioning . 53

8.4 Allocation . 54

8.5 Cyclic Allocation . 54

8.6 Object Model . 55

8.7 Write Barrier . 56

8.8 Additional-Root Set . 57

8.9 Delayed Deallocation . 57

8.10 Marking Phase . 57

IV Experiments 59

IV

9 Experiments and Results 59

9.1 Dacapo Benchmark Suite . 60

9.2 JLayer MP3 Encoder . 60

9.2.1 Alignment . 62

9.2.2 Analysis . 63

9.3 Monte Carlo . 64

9.4 Cyclic Allocation Program . 65

9.5 Summary . 67

V Conclusions 68

10 Conclusions 68

10.1 Future work . 69

V

List of Figures

1 Object graph . 5

2 Example of an object graph. 6

3 Example for fragmentation . 12

4 Region-based memory management 19

5 Example for tracing . 21

6 Object graph with cycles . 23

7 Reference counting overhead when a particular reference is

changed . 24

8 A two layer generational garbage collector. 26

9 Ulterior reference counting 26

10 Cyclic bu�er with size 6 . 29

11 Possible references in AGC . 35

12 Additional-root set . 37

13 Java: From source code to execution 48

14 Just-in-time compilation vs. interpreting 49

15 Memory partition in Jikes . 51

16 Jikes allocation command . 54

17 Changes in the object model of Jikes 55

18 The write barrier for reference counting 56

19 Results of the JLayer mp3 encoder test runs 62

20 Alignment of data in memory 63

21 JLayer mp3 encoder: AGC vs. tracing with extended header . 64

22 Results of the monte-carlo benchmark 65

23 Results of the cyclic allocation program 66

VI

List of Algorithms

1 An annotated method . 53

VII

List of Tables

1 Memory management systems, expiration classes and events . 32

2 Results of the Dacapo benchmark suite 61

VIII

Part I

Introduction

1 Introduction

Memory management is one of the key aspects of every program execution.

The �rst part of this master thesis deals with a new way to analyze mem-

ory management systems (MMS): Expiration classes. The expiration class

analysis reveals the origin of costs in a conceptual way and makes them

comparable.

Based on the results gained by expiration class analysis, we developed a new

memory management system, called Annotated Garbage Collection (AGC).

AGC is a combination of two other systems: tracing garbage collection and

cyclic allocation.

In cyclic allocation, every allocation requires the same amount of time, which

is very good. Moreover, its memory consumption can be calculated at

compile-time. Nevertheless, sometimes it is di�cult to use. On the other

hand, garbage collection is very convenient because the programmer does

not have to care about memory management. However, in nearly all imple-

mentations of garbage collection the allocation time is not predictable.

Cyclic allocation has predictable memory consumption and predictable allo-

cation time. However, the programmer has to give additional information to

use cyclic allocation. Thereby, she improves the predictability of the system.

Therefore, the programmer should give as much information as possible, but

she has to care about the correctness of this information. If it is not possible

to provide correct information, garbage collection is used, which does not

need additional information to be correct.

Benchmarks show that AGC is competitive to pure garbage collected systems.

1

When the programmer gives enough information, the number of garbage

collection runs can be reduced signi�cantly. Thereby, the program gets more

predictable.

1.1 Outlining of this Thesis

The master thesis starts with an introduction of memory management.

Thereafter, the concept of expiration classes is described. Fundamental

approaches of memory management are analyzed in the view of expiration

classes to determine their advantages and disadvantages. The following sec-

tions deal with AGC, a new memory management system we developed on

the knowledge gained by expiration class analysis. The thesis ends with the

results of benchmark tests we started to examine the properties of AGC.

Section 1: Introduction The introduction gives an overview of the master

thesis.

Section 2: Memory Management This section describes the base con-

cepts of memory management.

Section 3: System Properties The aim of this section is to introduce

some properties which are important in memory management.

Section 4: Expiration Class This section deals with the concept of expi-

ration classes. Some important memory management system are an-

alyzed, like explicit memory management, garbage collection, region-

based memory management and cyclic allocation.

Section 5: AGC: Conceptual Overview The key concepts of AGC are

described.

Section 6: Other Hybrid Memory Management Systems As AGC is

a hybrid memory management system, this section describes other hy-

brids and their solution to some key problems which arise if di�erent

systems are combined.

2

Section 7: Implementation Environment The system we extended with

AGC is described in this section.

Section 8: AGC: Implementation This section deals with the changes

done to an existing virtual machine.

Section 9: Experiments and Results We run several benchmarks with

our system. The results are presented in this section.

Section 10: Conclusions This section concludes the thesis.

3

2 Memory Management

Every computer program needs memory to store its program code and data.

The whole memory (called heap) is just one big space, and the program can

write values everywhere into this space. However, for e�cient use, this space

is handled by memory management.

The program can request pieces of memory from the memory management

when it needs it (this is called �to allocate memory�), and later, when there

is no need for it anymore, the program gives this pieces back (�the memory

is deallocated� or �the memory is freed�). It can be used again for other

purposes. Allocated memory which may be deallocated at some future time

is called dynamic memory. Otherwise, it is called permanent memory.

The main issue of memory management is to manage free memory. To al-

locate memory, the memory management has to �nd an appropriate portion

of free memory. Deallocation implies that the deallocated memory is made

suitable for later use. This can mean that the deallocated memory is added

to a list of free memory. If the allocated memory is not contiguous, the

memory management also has to help the program to �nd related data.

Modern, object-oriented programming languages like Java and C# do not

allow the programmer to use raw memory directly. She can only work on

objects.

Object An object is a piece of memory with a well-de�ned internal struc-

ture. The structure de�nes which positions in an object store which

kind of information. For example, an object can contain four positions

for numbers and three positions for characters. It is not possible for the

programmer to violate the structure. For example, she cannot write a

character at a number position. In object-oriented programming lan-

guages, only objects can be allocated, not raw memory. The allocated

memory is called the memory of the object.

The internal structure of an object is de�ned by its object type.

4

Figure 1: Object graph

Object type An object type de�nes the internal structure of an object.

Every object has exactly one object type, but many objects can have

the same object type.

The program uses special data to �nd objects in the heap. This data is called

references.

Reference A reference, also called a pointer, is a kind of data which contains

position information about other data. This other data can again be

an object. In objects, some positions can contain references. Thereby,

objects can refer to other objects.

Object graph As objects can contain references to other objects, the pro-

gram can create an object graph, where objects are vertices, and refer-

ences are directed edges.

The program needs some entry points to access the object graph. This entry

points are given by data which is stored at special positions in memory. Two

kinds of data can specify entry points: Global variables and the stack. The

stack stores temporary data whereas global variables often store permanent

5

Figure 2: Example of an object graph.

data. Global variables can be simulated by the stack. Therefore, for the rest

of the thesis we drop the notion of global variables. The entry points of the

object graph are only speci�ed by the stack. Figure 1 presents an example

of an object graph. Object A and Object D are the entry points.

To �nd an object, the program has to follow a path in the object graph,

starting at the stack and leading to the object. The object graph is very

important for some memory management systems. Therefore, we de�ne some

notions which are required later.

Reachability Object A can reach object B if there is a path in the object

graph starting at A and ending in B. In this case A is a start object and

B is reachable. An object can also be reachable if there is a sequence

of references starting at the stack. In Figure 2, object A can reach

object B, because there exists a sequence A → D → C → B. Object

A cannot reach object E.

Liveness An object is called �live� if it is reachable from the stack. Other-

wise it is called a �dead� object. In Figure 1, object E, F and G are

dead because they are not reachable from the stack. All other objects

are live.

Liveness is a very important property in memory management. Objects

which are not live can be deallocated because the program cannot use them

anymore. The program simply cannot �nd the position where the object is

stored.

Live Time The live time of an object is the time interval in which the object

6

is live.

A program always has to tell the memory management when it needs addi-

tional memory. However, memory deallocation can be done by the memory

management itself. It just has to check if an object is dead, because dead

objects can be deallocated. These objects will not be used anymore. This

type of memory management is called �implicit memory management�.

Implicit memory management systems are very convenient for programmers.

It is much easier to determine if additional memory is needed than to know

that some pieces of memory are not needed anymore. Lots of software errors

would not exist if implicit memory management would be used. However, this

comfort is not for free. It is not easy to determine the liveness of all objects.

The timing of programs using implicit memory management is unpredictable,

which is very bad for time critical applications, like control software in cars.

Memory management which requires deallocation information of the program

is called explicit memory management. Explicit memory management is

faster than implicit memory management, but it is not easy to use explicit

memory management correctly. Due to improper use, memory violations can

happen.

Memory violation Memory violations happen if the program stores data

at positions which are already used elsewhere.

Memory violations are errors which are hard to �nd. Computer viruses can

use memory violations to infect a computer, because they overwrite impor-

tant parts of the memory of a program.

Correctness A memory management system which does not allow memory

violations is called correct.

Most implicit memory management systems are correct. However, if a system

is not correct, it can be at least type-safe.

Type-safe A system is called type-safe if the data of an object can only be

used according to its intention. For example, numbers cannot be used

7

as references, and references are not used for calculations.

A type-safe system need not be correct, nevertheless, some kinds of program

malfunction cannot happen. For example, if a number is used as a reference,

it can point at a position in memory where program code is stored. If the

program stores data at this position, the program code gets corrupted. In a

type-safe system, this scenario cannot happen because a number cannot be

used as a reference.

8

3 System Properties

This section deals with some properties a system can have. First we will de-

scribe time dependent properties. Thereafter, we will introduce some memory

dependent properties.

3.1 Time speci�c properties

The time a computer program needs for its calculations is very important.

It is annoying to wait for the computer to complete its work. On the other

hand, what is a very fast program for, if it freezes every now and then for

some seconds and does not react to any input. These properties are described

in this section.

The �rst property we want to describe is the �total runtime�.

Total Runtime The �total runtime� of a program or a part of a program

is the time that passes from the start of the part of program until its

end.

The total runtime is very important for calculations, but not very important

for programs with user input. The fastest program seems slow if it waits for

user input most of the time. For this kind of programs, the runtime between

user input is important.

The notion of �runtime� does not only denote the time span a program needs

for its execution. It is generally used to speak about the time the program is

running. For example, �Something is done during program runtime� means

that something is done in the time the program is executing.

A related notion of �runtime� is �compile-time�. For example, some system

checks can be done at compile-time. This means that the checks can be done

before the program is actually executed. This is very good, because compile-

time checks only have to be done once, and they do not in�uence the timing

during program execution.

9

As we already mentioned in the introduction of this section, it is rather

annoying if an application freezes for some seconds. This can become catas-

trophic if it happens in a brake controller of a car. The time a program does

not show any progress is called pause time.

Pause Time In the context of this master thesis, the pause time is de�ned

as the maximum time it takes for a single memory management action,

like allocation and deallocation, to execute. It is the maximal time a

program may have to wait without making progress due to memory

management activities.

For example, the allocation of memory is a source of pause times. Some

memory management systems are very fast for most allocations, but every

now and then, additional calculations are necessary, which let the program

freeze for seconds. However, this does not mean that the memory manage-

ment system is slow according to the total runtime. It can be even faster

than a system without pause times.

Total runtime and pause time also exist in other systems like communication

networks, but they have other names: Throughput and latency. Throughput

is the amount of data delivered in a speci�c time span. Latency is the time

needed to deliver one datum. Throughput versus latency is a fundamental

trade o�. In lots of systems, it is possible to process a set of tasks faster than

every task one by one.

Properties or actions can depend on various factors. For example, sorting a

list depends on the size of the list. If the list gets longer, sorting takes more

time. Another example is the allocation time of a memory management

system.

Allocation Time The allocation time is the time needed to allocate a single

object. The allocation time can depend on the size of the object, or on

the size of the heap, or on number of objects already allocated. The

allocation time is called �predictable� if it only depends on the size of

the allocated object.

10

Deallocation Time The deallocation time is the time needed to deallocate

a single object and to make its memory suitable to be reused. Some-

times it pays o� to reorganize the free memory at every deallocation to

allow faster allocation afterwards.

3.2 Space speci�c properties

The memory available for a program is �nite. When all memory is used,

every following allocation will fail. The most obvious space speci�c property

is the total memory consumption.

Total Memory Consumption The total memory consumption is the amount

of memory needed to provide every allocation the requested amount of

unused memory. Total memory consumption is also called �maximum

heap-size�.

This property is unknown for most of the programs, because everyone is

happy as long as the program runs, and if not, the users have to buy addi-

tional memory. However, for systems with limited resources, this property is

very important.

If a program does not deallocate its unused memory, the memory consump-

tion increases until perhaps the whole memory gets full. This is called a

�memory leak�.

For some implicit memory management systems, the maximum heap-size

is irrelevant because it is con�gurable. As long as the set heap-size is big

enough, the system will be executed. For these kind of systems, the live-

heap size is more important.

Live-Heap Size The live-heap size is the maximum amount of live memory

in a program.

If a perfect explicit memory management would replace the implicit memory

management, the live-heap size would be the same as the maximum heap-

11

Figure 3: Example for fragmentation

size. It is good to know the live-heap size because the heap-size of an implicit

memory management system has to be set when the program is started. If

the con�gured heap-size is smaller than the live-heap size, the program will

run out of memory.

The maximum heap-size is predictable if it only depends on the program

and not on the time the program is running. This is very important for long

running programs like web servers. A real-time memory management system

requires both allocation time predictability and heap-size predictability.

Another important memory property is fragmentation.

Fragmentation A system su�ers from fragmentation if the free memory

of the system is not contiguous. Fragmentation, sometimes also called

external fragmentation, is a property of the system, not of the program.

As fragmentation in�uences the maximum heap-size, the heap-size of

the program depends on the system.

Figure 3 shows an example for fragmentation: The rectangle to the left

represents the memory. The red inner squares are allocated objects. Green

represents free parts of the memory. As the green squares are not contiguous,

the system su�ers from fragmentation. The system wants to allocate the new

yellow object of size two. This is not possible, although seven memory �elds

are unused. No piece of free memory is big enough to store the object.

There are some interesting things about fragmentation:

12

• Fragmentation may increase the allocation time. In the example of

Figure 3, the memory management system has to scan over all pieces

of free memory to �nd out that the yellow object cannot be allocated.

• Fragmentation can be eliminated by moving used memory together.

This is called compaction. Compaction is di�cult because references

all over the heap may have to be changed if their target objects have

moved.

• If all allocated objects have the same size, then fragmentation may have

no consequences.

13

Part II

Concepts

4 Expiration Class

This section deals with the concept of expiration classes. There are lots of

di�erent memory management systems available, which are hard to compare.

There is the concept of explicit memory management using explicit free()-

calls for deallocation of every object. Then there is the concept of region-

based memory management, which allocates objects that belong together

into the same memory region. A third fundamental approach is the use of

garbage collection, which deallocates memory automatically when it is no

longer reachable.

For each of these methods there exist a lot of di�erent implementations. It

is very hard to compare them, as they all are specialized for di�erent parts

of memory management. The expiration class analysis allows to compare

di�erent memory management systems in a conceptual way.

First of all, some de�nitions are required:

Expiration Class An expiration class is a set of objects which are deallo-

cated at the same time.

Every memory management system uses expiration classes. Otherwise, no

memory can be used again. Therefore, expiration classes are fundamental

for every possible implementation. There are some questions, which are

important to analyze a memory management system:

• How is an expiration class managed?

� If every expiration class contains just a single object, expiration

class management is very simple.

14

� When it contains more than one object, one way to manage them

is to store them in a contiguous piece of memory.

� Objects in an expiration class can be organized by an additional

data structure.

� It is possible that there is no management at all, but then, the ob-

jects of the expiration class have to be determined in an additional

step before the expiration class is deallocated.

• How big are expiration classes?

� If an expiration class only contains one object, fragmentation is

very likely because objects have arbitrary size.

∗ In [12], an implementation of a memory management which

uses one-object expiration classes and which provides pre-

dictable fragmentation is presented. Only if external frag-

mentation is predictable, memory consumption and allocation

time can get predictable too.

� Bigger expiration classes can consist of memory blocks of the same

size. Fragmentation has no consequences then.

� If an expiration class is larger, but its objects do not get dead at

the same time, one talks about internal fragmentation.

� Every expiration class might contains some additional manage-

ment data.

• How fast can all objects in an expiration class be deallocated?

� For the runtime of a program, deallocation time is as important

as allocation time. With a clever design, the deallocation time of

an expiration class is always the same, independent of the size of

the expiration class. When there are many object in an expiration

class, the deallocation time per object gets very low. The question

15

is, which objects should be put into the same expiration class, and

when can it be deallocated.

• What kind of objects does the expiration class contain?

� An expiration class can contain objects which will all get dead at

a similar time. Furthermore, it is possible that all objects in an

expiration class must have the same size or the same object type.

• How does an expiration class a�ect other expiration classes?

� In some memory management systems, the expiration classes de-

pend on each other. Therefore, one expiration class cannot be

deallocated before another class has been deallocated. This rela-

tionships have to be managed, too.

• Who decides which objects belong to the same expiration class?

� Some memory management systems allow the programmer to

group objects together, other systems decide it themselves.

• When can the objects in the expiration class be deallocated?

To answer the last question, another de�nition is required.

Expiration Event The event which leads to the deallocation of an expira-

tion class is called expiration event.

Expiration events are as fundamental in memory management systems as

expiration classes. The time when an object can be deallocated is very im-

portant, as wrong timing leads to an incorrect system. Events are the most

abstract way to de�ne time.

An expiration event can be anything that happens during program execution.

For example, the execution of a special command is an event. The question

is how to detect the expiration event. The answer of this question leads to

the basic properties of the memory management.

There are some aspects one has to keep in mind when looking for expiration

16

events. For every memory management system, there exists a time interval in

which a correct expiration event has to occur. The interval starts at the last

time an object of the expiration class has been accessed, and it ends when

the expiration class cannot be found anymore. Invalid expiration events lead

to two serious kinds of malfunction:

Dangling pointers Dangling pointers occur when an object is deallocated,

but there still exist some references to it. When the memory of the ob-

ject is used again, its content is invalid for these references. By reading

corrupt data via such references, the program may behave unexpect-

edly. Dangling pointers are a common source of memory violations.

Memory leaks Memory leaks occur when the programmer does not deal-

locate memory at all, or she does it to late. If the program is running

very long, and it creates memory leaks all the time, it may run out of

memory and be unable to continue.

The Dangling pointer problem happens when the expiration event is triggered

too early. Memory leaks arise when the expiration event does not occur at

all. Both indicate an incorrect and unpredictable computer program.

In the following sections, we will analyze some memory management systems

using expiration classes, and we will show that the approach is meaningful.

The systems are ordered by their expiration event and the size of their expi-

ration classes.

4.1 Explicit Memory Management

Explicit memory management is one in which the programmer takes care

of allocating and deallocating objects. In view of expiration class analysis,

this denotes that she has to trigger the expiration events herself. The mem-

ory management system cannot force the programmer to use the expiration

events in a correct way. Therefore, both dangling pointers and memory leaks

are possible. The problem is that the programmer cannot wait until an ob-

17

ject is dead to deallocate it, because then, she has no information to tell

the memory management system which object it should deallocate. This is

the origin of the dangling pointer problem. An object should be deallocated

when there is exactly one reference left to reach it.

All in all, the programmer has the responsibility to use the memory manage-

ment correctly. The memory management only provides the functionality of

allocating and deallocating memory.

The next two sections present such explicit memory management systems,

which only di�er in the size of their expiration classes.

4.1.1 Explicit Memory Management using a simple free()-statement

One of the most used memory management system is an explicit memory

management system using expiration classes which contain just one object.

The programmer has to set a free()-statement in the program code whenever

she wants to deallocate an object.

This kind of memory management system has several disadvantages, which

we already discovered in the previous sections, such as

• invalid expiration events: sometimes it is di�cult to set free()-

statements correctly. If the programmer triggers expiration events out-

side the correct time interval, both dangling pointers and memory leaks

may occur.

• fragmentation: As every object can have arbitrary size, this system

has to care about fragmentation because it can in�uence allocation

time and memory consumption.

4.1.2 Region-based Explicit Memory Management

Region-based memory management systems are systems which have well-

de�ned expiration classes, called regions, containing one or more objects.

18

Figure 4: Region-based memory management

This means that at every moment, an arbitrary expiration class knows which

objects it contains. For example, in Figure 4, three di�erent regions contain

ten objects.

There exist many implementations of region-based memory management sys-

tems, which di�er in their handling of expiration classes and in the detection

of expiration events. In explicit region-based memory management, the pro-

grammer decides which objects belong together to the same expiration class,

and she triggers the expiration event herself.

The used expiration classes and expiration events lead to the following prop-

erties:

• As every explicit system, dangling pointers and memory leaks can oc-

cur. In this system, it is even more likely, because if the programmer

assigns an object to the wrong expiration class, it will be deallocated

too early or too late.

• Low deallocation time per object. As stated before, it is possible to

organize an expiration class in a way that it can be deallocated in-

dependent of its size. Thereby, the deallocation time per object gets

low.

• Fragmentation can be avoided. Nevertheless, the expiration classes

themselves su�er from internal fragmentation. However, the program-

mer has to care about it. If the programmer can estimate the internal

fragmentation, the maximum heap size can be estimated. Moreover,

19

allocation time and deallocation time can be predictable too. Internal

fragmentation neither in�uences the allocation time nor the dealloca-

tion time.

Because of the third property region-based memory management systems

are used a lot for real-time programs. Neither the maximum heap size, nor

allocation time nor deallocation time depends on the memory management

system. All three properties can be estimated by only knowing the program.

Nevertheless, it is still di�cult to estimate these three properties.

4.2 Implicit Memory Management: Garbage Collection

Garbage collection is one kind of implicit memory management, which means

that the programmer has to allocate memory when she needs it, but she does

not have to deallocate it. Deallocation is done by a garbage collector. It is

very convenient for the programmer to use garbage collectors because she

does not have to care about the live time of the used objects. The garbage

collector determines during runtime if an object is live. If it is dead, the

object is deallocated.

In the following sections, we will present some kinds of garbage collec-

tion. First we will analyze tracing garbage collection and reference counting

garbage collection, which are the basic solutions for a garbage collected sys-

tem. Thereafter, we will introduce some combinations. What we will see is

that either the management of expiration classes is expensive, or the detec-

tion of the expiration events is.

4.2.1 Tracing Garbage Collector

A tracing garbage collector was �rst described in [19]. When there is no

memory left on the heap, the garbage collector stops the program. Then it

searches through the stack for references to the heap, called root references.

20

Figure 5: Example for tracing

Root An object on the heap is called �root� if a reference on the stack points

to it. Such a reference is called �root reference�.

Starting from the root references, the collector iterates through the object

graph, always following all references it can �nd. The collector marks each

object it visits with a �ag. This is called the �marking phase�. The objects

which are marked are called reachable.

After the marking phase the garbage collector sweeps over the heap and

deallocates every object which is not marked. This is called the �sweeping

phase�.

An example for tracing can be seen in Figure 5. Figure 5(a) shows the object

graph before the garbage collector starts. In Figure 5(b), the marking phase

already passed. Object A and B are marked because root references point to

them. Object D is marked because the marked object A contains a reference

to it. The objects C and E are not marked, because they are not reachable.

They are deallocated during the sweeping phase. Figure 5(c) shows the object

graph after garbage collection.

The expiration event therefore is triggered when the heap is full and no

additional memory can be allocated. This is not expensive to track and most

memory management systems have to check it, because they have to check

21

if there is free memory left to allocate.

Nevertheless, expiration classes are hard to determine. The whole marking

phase only exists to determine an expiration class. This has the advan-

tage that between two collection runs the memory management does not

do anything. A system using a tracing garbage collector is unbeatable in

performance between two collection runs.

Anyway, tracing still has all the overhead other systems have distributed

over the whole runtime: a collection run is pure overhead. Only the system

bene�ts of it, not the program. An implicit system promises to provide

memory, and it has to collect dead objects to keep this promise.

The determination of expiration classes leads to long pause times, because

the program cannot make any progress during a collection run. This could

violate the correctness of the system. Moreover, the pause time depends on

the size of the heap. When the heap-size increases, the pause times get longer.

This can be rather annoying for the user. In safety-critical applications, this

is unacceptable.

Tracing garbage collection has a second disadvantage as well. The workload

of the garbage collector does not depend on the number of unreachable ob-

jects, but rather on the number of live objects and the size of the whole

heap. Therefore, when the program has lots of permanent data, the garbage

collector always runs a long time, but deallocates few objects.

In summary, the lack of expiration class management leads to fast execution,

but also to long pause times, which can be very annoying.

4.2.2 Reference Counting Garbage Collector

Reference counting is a second fundamental way to do garbage collection.

It was introduced in [11]. The garbage collector does not stop the program

and therefore it has no problem with pause times. This is possible by using

reference counters on every object. A reference counter stores the number

22

Figure 6: Object graph with cycles

of references which point to an object. When a reference is changed, the

counter of the previous target is decremented and the counter of the new

object is incremented. When a reference counter gets zero, the object can

be deallocated. All references of this object are deleted before deallocation,

which leads to a change of other reference counters.

For example, in Figure 6, the reference counter of object D is three, because

three references point to it. No reference points to object G, therefore it can

be deallocated. When this is done, the reference to object F is deleted, so

object F can be deallocated too.

The expiration classes of this system only consist of one object. As for the

other systems with this kind of expiration classes, this leads to the problem

of fragmentation.

Moreover, it is expensive to detect the expiration events. Programs update

references very often. Therefore, this operation should be very fast. As one

can see in Figure 7, keeping the reference counters up to date leads to four

memory operations instead of just one. Memory operations are some of the

most expensive operations a program can execute. Instead of just writing the

new reference value, the reference counters of two additional objects have to

23

Figure 7: Reference counting overhead when a particular reference is changed

be changed too. In most cases, a tracing garbage collector beats a reference

counted system in performance, because the determination of the expiration

classes in a tracing system is cheaper than the detection of the expiration

events in a reference counted system.

Reference counters are a way to approximate the liveness property of objects.

However, this approximation is not exact because there may exist cycles in

the object graph.

Cycle A cycle is a set of objects with the property that for any two objects

A and B in the cycle, A can reach B. Therefore, any object in a cycle

can reach itself. In Figure 6, an example of a cycle is formed by the

objects H, I, J, K, and L.

When there are cycles, the objects in any cycle are live, because the references

within the cycle are counted as well. Even if all objects of the structure

are unreachable by the program, the reference counter does not get zero,

and hence the expiration event is not triggered. These objects have to be

deallocated by a fallback mechanism.

As illustration, in Figure 6, the cycle {H, I, J, K, L} is only reachable from

object B. When this reference gets deleted, the reference counter of H re-

mains one because of the reference coming from L. This reference will never

24

be deleted, because the Object L is unreachable and therefore cannot be

changed.

4.2.3 Garbage Collection in general

As stated in [7], every garbage collector is a combination of tracing and

reference counting. With some adaptions, the marking phase of a tracing

system can calculate exact reference counters, which even ignore cycles. This

can improve reference counting, because it allows to ignore some changes of

reference counters. If some reference counters are zero, a marking phase is

started to calculate the exact reference counters of this objects. If a reference

counter is still zero, the object can be deallocated.

On the other hand, additional reference counting allows a tracing system to

process distinct parts of the heap separately. Thereby, the time of a collection

gets independent of the heap size, it depends only on the size of the heap

segment.

In view of expiration classes, in a hybrid system of reference counting and

tracing, expiration classes are determined faster than in tracing, but slower

than in reference counting, whereas the detection of expiration events is faster

than in reference counting, but slower than in tracing.

To analyze an arbitrary garbage collector, one has to �nd out what kind of

heap segments are used, how these segments are handled, and how references

between heap segments are handled. The stack can be seen as a special heap

segment, which need not be collected but which in�uences the live times of

objects in other segments.

An example is a two layer generational garbage collector [5, 22], as illustrated

in Figure 8. The heap is split into two parts, called mature space and nursery.

All objects are allocated into the nursery. When it is full, garbage collection

starts. After the nursery is collected, all live objects are copied from the

nursery to the mature space. Therefore, when the nursery is collected again,

25

Figure 8: A two layer generational garbage collector.

Figure 9: Ulterior reference counting

these objects are not considered, which reduces the time for both phases

of Tracing. References from the mature space to the nursery have to be

processed too, because they can keep objects in the nursery live. These

references are handled by reference counting.

The mature space is only collected if the nursery has been collected before.

Therefore, during the marking phase of the mature space, the nursery is

empty, and no references from the nursery to the mature space can exist.

To sum up, the contribution of a generational garbage collector is to speed up

the determination of expiration classes by reducing the search space. How-

ever, the detection of expiration events gets more expensive.

Another example of a hybrid garbage collector is ulterior reference counting,

described in [10]. Ulterior reference counting is a generational garbage col-

lector too, but it manages the mature space with reference counting. It has

26

been observed that references in the mature space do not change very often

and therefore detection of expiration events is not that expensive and pause

times are reduced, too. References from the stack are ignored, because they

change a lot. When the reference counter of an object gets zero, an addi-

tional tracing phase checks whether the object is reachable from the stack.

Ulterior reference counting is shown in Figure 9.

It is very hard to make the allocation time of a garbage collected system pre-

dictable. It would be possible to implement a predictable reference counting

garbage collector, which implies predictable allocation time and predictable

memory consumption. However, reference counting is not able to collect cy-

cles. A tracing garbage collector collects cycles, but allocation time is not

predictable because of long pause times.

One way to use real-time programs with garbage collection is to create a

collector which can process small, independent pieces of memory and the

time needed for one piece is known. The collector works in parallel to the

program all the time. If the program does not need more memory than the

collector can deallocate in the same time, it is possible for the program to use

this memory management system. One such garbage collector is described

in [6].

4.3 Implicit Region-based Memory Management

In section 4.1.2, we already introduced region-based memory management

systems. We stated that region-based memory management systems di�er in

their handling of expiration classes and in the detection of expiration events.

The de�nition of expiration classes as well as the de�nition of expiration

events can be done by the programmer, it can be done by program analysis

at compile time, or it can be done at runtime. Program analysis is di�cult,

the programmer makes mistakes, and doing it at runtime is expensive. Any-

way, all combinations lead to a new kind of memory management. As an

example, we will analyze just one method of implicit region-based memory

27

management, which is presented in [21].

The method presented in [21] de�nes expiration classes as follows: Objects

which are connected belong to the same expiration class. Two objects are

connected if the �rst object has a reference to the second, or the other way

around. Therefore, two objects from di�erent regions cannot be connected.

The mapping of objects to regions can be done at compile time by program

analysis, which minimizes management costs at runtime.

The expiration event is triggered when the last reference from the stack to an

object in a region is destroyed. The paper does not describe how this is done.

We assume that some kind of reference counting is used. The expiration event

would be detected at runtime then. As only references are considered which

are not stored in objects, no cycles are possible. Therefore, a problem of

reference counting, cycle detection, is avoided.

The determination of expiration classes is the main problem of region-based

memory management systems. For example, in the presented method, one

permanent object keeps a whole region alive, even if it contains lots of short

living objects. It is even possible that there only exists one expiration class

for the whole program. In this case, no memory will ever be deallocated. This

is called the region-explosion syndrome. The region-explosion syndrome is

an extreme form of internal fragmentation. Region explosion also occurs in

most other region-based systems.

4.4 Cyclic Memory Allocation

Cyclic memory allocation is described in [20]. It is a very special way of

memory management. It uses one-object expiration classes, but it does not

su�er from fragmentation. It does not detect expiration events at all, and it

does not really deallocate objects.

To understand the system, we �rst have to introduce some notions.

Allocation site An allocation site is a command in the program code which

28

Figure 10: Cyclic bu�er with size 6

allocates new memory. For example, in the programming language C,

every malloc()-statement is an allocation site.

Furthermore, the concept of cyclic bu�ers is important:

Cyclic bu�er A cyclic bu�er is a special implementation of a bu�er. When

the bu�er is full, the next allocation will overwrite the �rst object in

the bu�er. The bu�er has a �xed size. One has to choose the size of

the bu�er carefully. If it is too small objects are overwritten too early.

A cyclic bu�er is shown in Figure 10. The �rst object O1 is allocated

at the beginning of the bu�er. The following �ve objects are allocated

exactly after the previous object. When the program wants to allocate

O7, there is no memory left at the end of the bu�er. Thus, the memory

of object O1 is reused.

The intention of [20] is to eliminate memory leaks. This memory management

system is called cyclic memory allocation, because it uses a cyclic bu�er for

every allocation site. Thereby it restricts the amount of memory which can

be allocated at a speci�c allocation site. If the cyclic bu�er of an allocation

site is full, the next allocation at this site will overwrite the �rst allocated

object. Thereby, the memory required by a speci�c allocation site is �xed.

The size of the bu�ers is important. It has to provide enough memory for

29

all objects which can be live at the same time. Otherwise, live objects will

be overwritten. Nevertheless, even if the bu�er is too small, the system is at

least type-safe, because the overwritten object and the newly allocated object

have the same object type. Therefore, memory violations cannot happen.

For the expiration class analysis, cyclic memory allocation is special because

no explicit deallocation is done. The memory of an object is just reused,

it is not deallocated before. Therefore, the expiration event is triggered

implicitly when an object overwrites another one. This event does not have

to be detected.

The expiration classes only contain one object, nevertheless, the system does

not su�er from fragmentation, because the objects in a bu�er all have the

same size. Only internal fragmentation can happen if some bu�ers are too

big. The total memory consumption is predictable. It is the amount of

memory required for the cyclic bu�ers.

The allocation time is predictable too. Every allocation site only needs to

know the position of its bu�er. The cyclic bu�ers are not moved during

program runtime. If an allocation site remembers the position of its bu�er

once, it can �nd the bu�er instantly at all following allocations. Bu�er

handling itself does not depend on anything except the bu�er. Therefore,

allocation time is predictable.

The problem is that it is not possible to de�ne proper bu�er sizes for all

allocation sites. In [20], the authors tried to determine suitable bu�er size

using test runs. However, when the number of live objects in a bu�er depends

on the input of the program, it is likely to set insu�cient bu�ers.

4.5 Hybrid Memory Management Systems

All presented memory management systems have advantages and disadvan-

tages, and people tried to combine them. The costs of the resulting system

are a combination of the costs of the subsystems. Moreover, the combination

30

itself implies some additional costs.

The hybrid systems do not introduce new expiration events nor new ways

of expiration class handling. Nevertheless, the way how to combine di�erent

systems is interesting. We developed a hybrid system too, and we will present

our solution in the next section.

By presenting our system, we will expose some common problems of hybrid

systems. In Section 6 we will then present the solutions of other combined

systems.

4.6 Summary

We analyzed the most important implementations of memory management

systems. We saw that most systems use easy-to-detect expiration events,

because detecting expiration events can be expensive, as it is the case for

reference counting. Systems with common expiration events share common

properties.

The handling of expiration classes is important for space-speci�c system prop-

erties. Lots of systems which use one-object expiration classes su�er from

fragmentation. On the other hand, sometimes it is di�cult to properly de�ne

bigger expiration classes. If the expiration classes are determined at runtime,

long pause times can occur.

A short overview over the presented memory management systems can be

found in Table 1.

31

System Expiration Class Expiration Event

Simple explicit MMS One object free()-statement
Region-based explicit
MMS

Programmer-de�ned
region

freeRegion()-
statement

Tracing garbage
collector

All dead objects found
in the marking phase

Heap is full

Reference counting One object Reference counter gets
zero

Region-based implicit
MMS

System-de�ned region Region is unreachable

Cyclic memory
allocation

One object The object gets
overwritten

Table 1: Memory management systems, expiration classes and events

5 AGC: Conceptual Overview

This section introduces Annotated Garbage Collection (AGC), a memory

management we developed on the insight we got in the last section. We

wanted to create a memory management system satisfying the following prop-

erties:

1. It should be applicable for the programming language Java. Java pro-

grams typically run in a virtual machine, which uses any kind of garbage

collection for memory management. Therefore, the language only sup-

ports allocation. No constructs for deallocation are available.

2. The programmer should be able to improve the behavior of the system

by giving additional information.

3. When the programmer gives enough information, allocation time and

memory consumption should get predictable. These two properties are

very important for real-time programs, which absolutely require correct

timing.

4. The performance of our system should be competitive to other systems.

5. It should be easy for the programmer to write a correct program.

5.1 Expiration Classes and Expiration Events

As we have seen in the previous section, it is important to have expiration

events which are easy to detect and manage. It is not necessary that all

expiration classes depend on the same kind of events. Therefore, we use a

combination of events, which are all easy to handle, namely we combine the

event for a tracing garbage collector, �the heap is full�, and the implicit event

of cyclic memory allocation.

Cyclic memory management satis�es all except the �rst and the last property.

It is di�cult to apply it on java programs, and sometimes it is hard to de�ne

33

the correct bu�er sizes. A garbage collector is always convenient to use and

it is correct, but it fails on Property 2 and 3. In combination, one starts at

the correctness of garbage collection and improves the other properties by

using cyclic memory allocation as far as correctness is not violated.

The performance of the resulting system will be good. The costs of detect-

ing the �rst expiration event are insigni�cant, as every memory management

has to detect if the heap is full. Otherwise, it could not grant a consistent

memory, because no additional objects can be allocated in a full heap inde-

pendently of the used memory management system. As we saw in Section

4.4, the event of cyclic memory allocation needs not be detected at all.

When the heap is full we have to determine the expiration class of the tracing

garbage collector. This is done by the marking phase. The expiration classes

of cyclic allocation needs no special treatment, because they are deallocated

implicitly.

If collection runs are neglected, a tracing garbage collector is very fast. We

reduce the number of collection runs by reducing the number of objects

which are managed by the garbage collector. Therefore, it is not absolutely

necessary to use cyclic allocation for all objects. Yet it is important to keep

in mind that allocation time is only predictable if no collection runs are

necessary.

5.2 Memory Partitioning

To use both memory management systems, we split the heap into two parts:

The �rst segment is managed by a tracing garbage collector (called GC heap),

the second by cyclic memory allocation (called cyclic heap). However, there

are some problems: The garbage collector should only consider objects in

its part of the heap, since otherwise, we could not reduce pause times and

surpass simple garbage collection.

Still we have to consider references from the cyclic heap into the GC heap

34

Figure 11: Possible references in AGC

during the marking phase, because maybe some objects in the GC heap are

only reachable from objects in the cyclic heap. Another problem is that

invalid references might exist if some bu�ers are too small, and a garbage

collector may gets incorrect if it processes invalid references. Every memory

management which uses a combination of garbage collection and a second

system has to include solutions for these problems. We will present our

solution in the subsequent sections.

5.3 Reference Handling

In this section, we will describe the management of all kinds of references.

There are four di�erent kinds of references in our system, as it can be seen

in Figure 11:

1. References from the GC heap to the GC heap. These are the only

references which have to be considered by the garbage collection in the

marking phase. All these references are valid. The source object as

well as the target object of the reference are managed by the garbage

collected system, which does not allow to create invalid references. This

kind of references is handled by the garbage collector, so no additional

treatment is required.

2. References from the GC heap to the cyclic heap. They do not matter at

all. The expiration events of objects in the cyclic heap do not depend

35

on references. These references can also be invalid. The target object

might already be deallocated.

3. References from the cyclic heap to the cyclic heap. They do not in-

�uence the system either for the same reasons as references of type

2.

4. References from the cyclic heap to the GC heap. These are more di�-

cult to handle. They have to be considered in the marking phase of the

garbage collector, because it may be that some objects in the GC heap

are only reachable through the cyclic heap. For example, in Figure

11, object C is live, because it can be reached from Object E. How-

ever, when only references of GC heap objects are considered, object

C would be deallocated.

To solve the problem of the references of type 4, we apply reference counting,

as it is done for generational garbage collectors. Every object in the GC heap

has a reference counter for references coming from the cyclic heap. In Figure

11, the reference counter of object C has the value one, all other counters

have value zero.

It is not enough to stop the deallocation of objects with reference counter

greater than zero. Object F in Figure 11 would be deallocated then. The

marking phase would ignore Object C, because it is not reachable from ob-

jects in the GC heap. It is not deallocated since its reference counter is one.

However, object F is only reachable from C, and if C is not handled during

the marking phase, F is not treated either. Moreover, the reference counter

of F is zero.

Therefore, objects with reference counter greater than zero have to be used

as additional roots for the marking phase.

36

Figure 12: Additional-root set

5.4 Additional-Root Set

As we have decided, objects with reference counter greater than zero will be

used as additional roots for the marking phase. Now we have to think about

how to manage these roots. The easiest way would be adding an additional

search-phase for �nding additional roots. However, this would increase pause

times, which we want to avoid. Thus, we maintain and manage a set of

additional roots.

Figure 12 shows the additional-root set for a small example. Objects B and C

are reachable from an object in the cyclic heap, namely Object E. Therefore,

these objects have been added to the additional-root set.

An object is added to this set when its reference counter is increased from zero

to one. As every reference counter starts from zero, all possible additional

roots are added to the set at least once. It is possible that an object is added

to the set more than once. This actually does not matter, because during

the marking phase objects may be visited more than once too. It is more

expensive to check for duplicates.

37

The problem of duplicates only occurs because we do not remove objects from

the additional-root set immediately when their reference counters becomes

zero again. This would be too expensive, and it would add additional pause

times depending on the size of the set. Before an additional root is considered

during the mark phase, the reference counter is checked. If it is zero, the

object is removed from the set. Otherwise, all references of this object are

processed.

Therefore, every valid additional root is added to the set, and every invalid

root is not considered in more than one garbage collection run.

5.5 Delayed Deallocation

An important part of reference counting is to process references of objects

which are deallocated. However, in cyclic memory allocation, deallocation

is not done explicitly. The memory is just reused. We know when objects

are overwritten. It happens at each allocation after the corresponding cyclic

bu�er has been full for the �rst time. The newly allocated object has the

same internal structure as the previous object, because all objects which are

allocated at the same allocation site are of the same type. Therefore, we are

able to �nd the references of the old object. We use the structure of the new

object to �nd the data. Thus, the following steps are required to allocate an

object:

1. Find the position in the bu�er where the object will be allocated.

2. Use the internal structure of the new object to delete all references of

object which is stored at this position.

3. Allocate the new object.

Therefore, before we use the memory again, all references of the old object

are deleted and the corresponding reference counters are updated. We call

this technique delayed deallocation because an object is deallocated at the

moment when its memory is used again.

38

A consequence of this technique is that some objects might never be deal-

located. This zombie objects can keep some objects in the GC heap alive

which would be deallocated otherwise. This is a memory leak. However, it

cannot grow. As the objects in the memory leak are dead, they cannot be

changed by the program, but to let the memory leak grow references from

dead objects to new objects have to be created.

Delayed deallocation is also used in [13] to check the correctness of explicit

memory management. The best expiration event for an object in explicit

memory management would be when the object is is only reachable through

one reference. However, the only correct time to deallocate an object is when

the last reference to the object is deleted. Programmers who use explicit

memory management, �rst deallocate an object and then delete the reference.

The tool presented in [13] waits for some time before it deallocates an object,

because then it is possible to check if the object really is dead.

5.6 User input

As we use a system with two coexisting memory management systems, some-

one has to decide which allocation scheme should be applied on which objects.

It might be possible to do this with program analysis, however, for now we

let the programmer decide.

By default, every object is allocated into the GC heap. The programmer

can decide for each allocation site, if she wants to use cyclic allocation. She

also has to tell the system the size of each bu�er. Therefore, it is possible to

adjust a program step by step.

This was one of the properties we wanted to achieve: If the programmer

is able to give some additional information, the system can be improved.

Cyclic allocation has a much better runtime behavior than tracing garbage

collection, but it cannot be applied on every system. In AGC, beside the

good properties of cyclic allocation, it is not necessarily used in the whole

program.

39

5.7 Properties of the System

The preceding sections described the concepts of AGC. In this section we will

look at the properties we have achieved. As we stated in Section 5.1, we are

using the fastest possible expiration events. This implies that our system can

be very fast. On the other hand, the expiration classes of a tracing garbage

collector need the most time to be de�ned, and we need to apply reference

counting, which is slow as well.

However, the other expiration class we use is the fastest possible. It is not

even necessary to de�ne it at all. To summarize, we will �nd our system

somewhere between high performance and long pause times.

5.7.1 Performance

The only time overhead of a tracing garbage collector is the duration of a

collection. The less objects a collection has to consider, the less time it takes.

Therefore, every object which is allocated by cyclic allocation reduces collec-

tion time. Most objects are short living. It is easy to use cyclic allocation for

short-living objects because the programmer can understand all aspects of

their purpose and calculate the required size of the cyclic bu�ers. Without

these objects, the garbage collector will run less frequently.

When all dynamic memory is allocated in cyclic bu�ers, no collections are

started at all and pause times are totally eliminated. The allocation time is

predictable then. This was one of the properties we wanted to achieve.

Cyclic allocation itself is very fast, its allocation time and its memory con-

sumption are predictable. That was one reason for using it. However, as

we already stated before, we had to implement some adaptions in order to

use it in combination with tracing, namely reference counting and delayed

deallocation.

We already described in 4.2.2 that reference counting is slow when it is done

40

all the time. Nevertheless, it can be applied when only few references are

considered. Modern generational garbage collectors surpass simple tracing

collectors most of the time, and they make use of reference counting.

All references have to be checked if reference counting has to be applied.

This implies some time overhead. When cyclic allocation is applied on more

allocation sites, this overhead will get less, and it will surpass the tracing

garbage collector. However, if reference counting has to be done very often,

AGC can get even slower. This happens when lots of references in the cyclic

heap point to objects in the GC heap. Such situations should be avoided.

The second adaption of cyclic allocation was delayed deallocation. In pure

cyclic allocation, the memory of an object is just reused. Now we have to

delete all references of the old object. This is some overhead, even if no

reference of the object points into the GC heap. A possible optimization

would be to check if the whole bu�er contains references to the GC heap. If

not, delayed deallocation could be skipped.

5.7.2 Correctness

Only garbage collected systems can provide correctness in a sense that no

object is deallocated which is still reachable, at the cost of runtime over-

head. Sometimes, garbage collection is too expensive. This is the reason

why explicit memory management systems are commonly used. In AGC, the

programmer can reduce garbage collection step by step and thereby improve

runtime behavior and predictability. Nevertheless, the programmer can use

AGC in an incorrect way if she gives wrong bu�er size information. However,

whenever she cannot calculate the bu�er size of an allocation site, garbage

collection can be used to ensure correctness. The programmer can use cyclic

allocation to improve runtime behavior, but she is not forced to use it.

41

5.7.3 Memory Consumption

For cyclic memory allocation, the amount of memory needed during program

runtime is known. The total amount of memory needed is the sum of all

cyclic bu�ers. The memory consumption of a garbage collected memory

management is not so easy to determine. For most Tracing garbage collectors,

the size of the GC heap can be con�gured. When the heap is full, a collection

is started. When the heap was not big enough, the program crashes. There is

some research work on approximating the maximum amount of live memory

in garbage collected systems [2], but this is a very di�cult goal to achieve

for general programs.

In AGC the programmer moves objects step by step from the GC heap to

the cyclic heap. Thereby, she makes the total amount of memory more and

more predictable.

Most optimizations in computer systems are not for free. In AGC we already

discussed the additional information required by the programmer to use cyclic

allocation. Moreover, we have some additional memory overhead:

• Reference counter

� We need a reference counter for every object. This means that

every object is at least a bit bigger than it was originally.

• Additional-root set

� We store our additional roots in a set, which requires some memory

too. We �xed the size of the additional set to avoid possible errors

in our implementation. In later versions, we may implement the

set in a more �exible way.

• Management data for cyclic bu�ers

� It is easy to manage a cyclic bu�er, but anyway, some data is

necessary to do it. This is described in Section 8.5.

42

AGC can lead to additional memory consumption if the bu�er sizes are too

big. Our experiments have shown that for most allocation sites, it is easy to

�nd the correct bu�er size, and most of the time, it is one.

5.8 Summary

AGC allows a trade-o� between correctness and predictability. The program-

mer controls the system behavior by the amount of information she gives to

the system.

43

6 Other Hybrid Memory Management Systems

Hybrid memory management systems try to combine the advantages of pure

systems. Most of the time, garbage collection is one part of such a combi-

nation because of its correctness. The second method tries to improve some

of the disadvantages of garbage collection. This was the case for AGC too.

We wanted to gain predictability and correctness, thus, our second part was

a predictable system.

In this section we will discuss three hybrid memory management systems:

two combinations of region-based systems with a garbage collector and one

combination of a garbage collector with explicit memory management.

6.1 Cyclone - Memory Management

Cyclone is not just a memory management system, but a whole programming

language. It wants to provide low-level memory access for the programmer,

by still be able to check the correctness of the program at compile-time. The

memory handling is described in [15].

The memory management system of Cyclone is a combination of garbage

collection and region-based memory management. Memory is typically al-

located on the garbage-collected heap. If the programmer wants to have

low-level access to some parts of the memory, she can create a region for it.

All memory in a region will be deallocated simultaneously.

As we described in Section 5.2, the problem of hybrid systems is how to

handle references between di�erently-managed parts of the heap. In Cyclone,

a region is seen as one big object, which is reachable from the stack as long as

it is not deallocated. To deallocate a region, the reference from the stack to

the region is deleted. The region actually is not deallocated until a collection

run. As a region is part of the garbage-collected heap, all references within

a live region are tracked in the marking phase of the garbage collector.

44

The programmer decides when a region can be deallocated. Therefore, dan-

gling pointers and memory leaks might exist. Memory leaks are no problem

in Cyclone. All unreachable objects of a memory leak are deallocate by the

garbage collector. To avoid dangling pointers, all references which point into

a region have to be deleted before the region is deallocated. This is checked

at compile-time.

6.2 Digital Mars D - Memory Management

As Cyclone, Digital Mars D is a programming language too. By default,

they use garbage collection. Nevertheless, explicit memory management is

allowed, as described in [1]. This is necessary, because it wants to use external

program code, which is written in a di�erent programming language using

explicit memory management.

Explicitly-handled objects, which contain references into the garbage-collected

heap, have to be declared. Otherwise, they are ignored at garbage collection

as additional roots. Before an object is deallocated again, the declaration

has to be removed.

In conclusion, not only deallocation has to be done explicitly, but also the

handling of the additional-root set. This can cause memory leaks in the

garbage collected heap as it is possible in AGC (described in section 5.5). In

AGC, the number of such memory leaks is limited by the bu�er size of the

according allocation site. However, in Digital Mars D, the number of such

memory leaks is unbounded.

Moreover, if the programmer forgets to register an additional root, a dangling

pointer might be created, because all objects which are only reachable from

this root will be deallocated because they are not found by the marking

phase. In AGC, no dangling pointers can point into the GC heap. Therefore,

correctness within the GC heap is guaranteed.

45

6.3 Regions supported by a Garbage Collector

A third combination is presented in [16]. This system uses a region-based

memory management system. If the the heap gets full because of growing

regions, the whole memory is garbage collected.

To remove internal fragmentation, during garbage collection all live objects

are copied into new regions. Objects which were in the same region before

garbage collection will be in the same region after the collection run again.

The problem of invalid references mentioned in Section 5.2 exists in this

system too. It is solved in the following way: either the deallocation of a

region is delayed until it is not reachable anymore, or references which might

get invalid are forbidden.

In summary, this memory management system provides a solution for the

region-explosion syndrome. If the system runs out of memory, it looks for

dead objects in the regions. Therefore, even regions with long-living objects

will be partly deallocated sometimes.

46

Part III

Implementation

7 Implementation Environment

In this section we describe the implementation environment we extended

with AGC. First, we will give a short introduction to Java, one of the most

popular programming languages. Thereafter, we will present the concept

of virtual machines. We have decided to use a particular virtual machine

called Jikes RVM. The last part of the section explains this decision and its

consequences.

7.1 Introduction of Java

Java is an object-oriented programming language. This means, among other

things, that the program does not work on raw memory, but on objects.

Java does not support explicit memory management, it does not provide

language constructs for object deallocation.

To run a program on a computer, it has to be translated from human-readable

source code, into machine-readable native code. This procedure is called

compilation. The translator is called compiler. Di�erent computers and

operating systems (called platforms) use di�erent native code. If it should

be possible to run a program on more than one platform, it has to be compiled

for each of the platforms.

Java goes another way. Java is not compiled into native code, but into some

kind of intermediate code, called byte code. It is not possible to run byte

code directly on a machine. Every platform must have a program called

virtual machine (VM), which can execute Java byte code. This is illustrated

47

Figure 13: Java: From source code to execution

in Figure 13. Source code is compiled into byte code by a compiler. The

byte code can be executed on di�erent platforms by a VM. More information

about the programming language Java can be found in [14].

7.2 Virtual Machine

Java programs typically run on a virtual machine. In this section, we will

deal with the concept of virtual machines and we will specify all important

components of it. The main task of a Java virtual machine is to execute

byte code. The Java byte code is a sequence of commands which have to be

executed one after the other. These commands are very similar to native-

code commands. Together with the byte code, the virtual machine gets some

additional information about the program. This is called �meta data�. Byte

code and meta data are packed together in a Java class-�le.

There are two ways to execute Java programs in a virtual machine. In modern

VMs, both techniques are used. The �rst technique is called interpreting. As

byte code and native code are very similar, it is possible to read one command

of the sequence and to execute it immediately. This is done by an interpreter.

To start execution, nearly no preliminary work has to be done. Of course,

this is not as fast as native execution, but the main purpose of Java programs

48

Figure 14: Just-in-time compilation vs. interpreting

is correctness rather than high performance.

The second technique is called just-in-time compilation. Before a part of

the byte code, called method, is executed, it is compiled into native code,

which can be used for further executions. When a method is started only

once, an interpreter is faster. However, when it is started more often during

program execution, just-in-time compilation has higher performance. This

is visualized in Figure 14. For the �rst executions, the interpreter is faster

because it needs no preliminary work. When the same method is executed

more often, just-in-time compilation surpasses interpreting.

Furthermore, every Java virtual machine delivers some kind of implicit mem-

ory management, most of the time a garbage collector. We will change the

memory management of a virtual machine to use AGC. For further informa-

tion about the Java virtual machine we refer to [17].

7.3 Jikes RVM

First of all, we had to decide which Java virtual machine we wanted to extend

with AGC. We decided to use the Jikes research virtual machine developed

by IBM, which is described in [3]. Jikes has some great bene�ts which led to

49

this decision:

• Jikes is called a research virtual machine because it supports e�cient

research about all parts of a virtual machine. For memory manage-

ment, it even contains a small scripting language to test the memory

management independently of the rest of the virtual machine. It also

provides all required constructs for AGC, like reference counting, an

e�cient tracing implementation, and ways to work on a split heap.

• Unlike other virtual machines, which are written in C or C++, Jikes is

written in Java. This is described in [4]. It is very convenient to develop

applications in Java and there exist powerful tools to do this. Further-

more, the design of Java implies well structured programs, which are

easier to understand than programs written in C. This is an important

feature, because to extend a program, one �rst has to understand it.

Virtual machines are complex applications and it is always hard to dig

into unfamiliar programs. Although Jikes is a Java program, it does

not run in a virtual machine itself. To make this possible, some tricks

are used. However, this is not important for our system.

Jikes also has some drawbacks, which we fortunately are able to deal with:

• Jikes only uses just-in-time compilation, because its �rst intention was

to execute server programs. Most server programs run for a very long

time and just-in-time compilation pays o� in the majority of methods.

The problem is that a just-in-time compiler is more di�cult to change

than an interpreter. We had to change it because we wanted to support

a second kind of allocation method, cyclic allocation. For this purpose

we utilize some special mechanisms, which are used by Jikes to be

executed without a virtual machine.

• Jikes uses the same memory management for itself and for the Java

program it executes. When we use AGC for the user program, Jikes

uses AGC for itself. It is not easy to use cyclic allocation for Jikes.

Thus, Jikes only uses Tracing garbage collection for its own memory.

50

Figure 15: Memory partition in Jikes

The memory partition is illustrated in Figure 15. The GC heap contains

both Jikes objects and program objects, the cyclic heap only includes

program data.

We are able to solve the �rst problem in a very nice way, but due to the

second problem, it is impossible to only use cyclic allocation at the moment.

51

8 AGC: Implementation

In this section we will deal with our implementation of AGC as memory

management of Jikes. First we will describe the initial system, thereafter, we

will explain all changes and extensions.

8.1 Initial System

Jikes provides many implementations of garbage collection, like Tracing, ref-

erence counting and generational garbage collection. Jikes is con�gured to

use one of them. One part of AGC is a Tracing garbage collection memory

management system. Thus, we start with the Tracing con�guration.

Jikes uses some extra partitions of the heap, which are not handled with

garbage collection, for example, one segment of the heap contains the byte

code of the program and of Jikes itself, another segment is for permanent

memory. It is necessary for Jikes that some parts of its memory are not

handled by the garbage collector, for example the memory which is required

by the garbage collector itself.

8.2 User Input

The developer of the program has to provide the information about how to

allocate objects. For now, she can do this with annotations. Annotations are

a feature of Java to add meta information to methods. We called the new

annotation �CyclicAllocation�. Whenever the just-in-time compiler wants to

compile a method, it checks if it is annotated with this annotation. If so,

all allocation commands in this method are translated into cyclic allocation

commands.

It is not possible to annotate a single allocation command itself, which would

be even more convenient. If there is more than one allocation site in one

52

Algorithm 1 An annotated method

1 @Cyc l i cAl locat ion (bu f f e r S i z e = 2)
2 p r i va t e Object c r ea teObjec t ()
3 {
4 re turn new Object () ;
5 }

method, we are not able to distinguish them. Therefore, we only allow one

allocation site in an annotated method.

The annotation contains one parameter, called �bu�erSize�. This parameter

speci�es the size of the cyclic bu�er required for this allocation site.

Algorithm 1 is an example of an annotated method. �createObject� is the

name of the method, �new Object()� is the allocation command, �@CyclicAl-

location(bu�erSize=2)� is the annotation. A bu�er of size two is set for this

allocation site.

In order to use cyclic allocation, the programmer has to extract every allo-

cation site she wants to change into a small method, which she annotates

afterwards.

8.3 Memory Partitioning

We need an additional segment in our heap which is managed by cyclic

allocation. It is important to check if an object lies in the cyclic heap or in

the GC heap. Therefore, we use a contiguous piece of the heap for the cyclic

heap as well as for the GC heap. It is very fast to check if the position of an

object is between the start and the end of a heap segment.

At the moment, both heap segments have the same �xed size for all programs.

It is possible to calculate the size of the cyclic heap of a speci�c program.

Anyway, this would require some kind of program analysis, which is not

available at the moment.

53

Figure 16: Jikes allocation command

8.4 Allocation

The allocation command in Jikes already had a parameter to specify the allo-

cation method. For example, some possible values were �defaultAllocation�,

�immortalAllocation� or �codeAllocation�. We added the allocation method

�cyclicAllocation�. When the just-in-time compiler detects a "CyclicAlloca-

tion" annotation, it changes the allocation method of the speci�c allocation

site from �defaultAllocation� to �cyclicAllocation�. Thereby we can allocate

each object into the correct heap segment.

The treatment of an allocation command is shown in Figure 16. Objects

with the �defaultAllocation� parameter are allocated in the GC heap, object

with the �cyclicAllocation� parameter are stored in the cyclic heap.

8.5 Cyclic Allocation

The implementation of cyclic allocation can be split up in three important

parts:

1. How to �nd the cyclic bu�er of an allocation site?

2. How to �nd the next slot in the cyclic bu�er?

3. Is delayed deallocation required before object allocation?

54

Figure 17: Changes in the object model of Jikes

Every allocation site, which uses cyclic allocation, gets a unique ID by the

just-in-time compiler. The implementation of the cyclic allocation contains

a look-up table, which contains the bu�er size, the position of the bu�er

in memory, the position of the next slot to use in the bu�er and a �ag to

indicate if delayed deallocation is already necessary for this bu�er.

This look-up table contains the answer to all three questions. Each allocation

site can �nd its entry in the table by its ID. The entry contains all information

to deal with all three questions. After an allocation, the entry has to be

updated. The position of the next slot changes at every allocation, the

delayed-deallocation �ag changes just once.

8.6 Object Model

An object does not only contain program data, but also some information

for the virtual machine itself. This information is organized in the so-called

object header. For example, it contains the mark bit required for a Tracing

garbage collector. An object model describes which information the object

header contains and how the information is organized.

AGC requires a reference counter in all objects of the GC heap. Nevertheless,

we extended all objects with a reference counting �eld, because Jikes does

not support the use of multiple models.

Figure 17 shows the changes in the object model. The reference counting �eld

was added at the begin of every object. Thus, it is easy to �nd independently

55

Figure 18: The write barrier for reference counting

of the object size.

8.7 Write Barrier

A write barrier is a generalization of reference counting. The barrier allows to

execute additional code before a new reference is written. The write barrier

for reference counting is illustrated in Figure 18: Without the write barrier,

only the value of a reference in an object is changed. When a write barrier is

applied, before the actual writing is done, the reference counter is updated.

Not all objects require references counting. Therefore, we check if the source

object lies in the cyclic heap, and if the target belongs to the GC heap. Only

if both conditions are true, the update of the reference counters is started.

A write barrier implies some overhead, even if nothing is done by it. This

will be shown later in some baseline benchmarks. Anyway, it enables us to

replace garbage collection by cyclic allocation step by step, which permits

spatial predictability, performance enhancement, while still allowing garbage

collection on critical parts of the program. Research results about the over-

head of write barriers can be found in [9].

56

8.8 Additional-Root Set

We use a list to manage the additional-root set. An object is added to the list

if its reference counter is incremented from zero to one in the write barrier

described in Section 8.7. It is possible that the additional-root set contains

an object more than once. Anyway, this does not change the result of the

marking phase during garbage collection.

An object is not removed from the list immediately when its reference counter

gets zero again. It would take too much time to �nd an entry in the list.

If the reference counter of an object is zero, it is removed when the list is

processed during collection. It is not enough for an object to be contained

in the additional-root set to avoid deallocation, the reference counter has to

be greater than zero too.

8.9 Delayed Deallocation

When the cyclic bu�er of an allocation site gets full for the �rst time, the

delayed-deallocation �ag is set. For all further allocations into this bu�er,

delayed deallocation is required. In a delayed deallocation, to deallocate an

object, all references are read from the object. Afterward, these references

are deleted and the the reference counters of the targets are updated.

8.10 Marking Phase

To ensure that all live objects are marked during the marking phase, we

could add our additional roots to the original root set. However, in Jikes it

is possible to add custom phases to a garbage collector. Therefore, we added

an additional marking phase to process the new set of additional roots. It

works in the same way as the original marking phase, but with a di�erent

root set. After both marking phases, the sweeping phase is started.

57

As stated in Section 8.8, an object is only processed as additional root if its

reference counter is greater than zero. Otherwise, the object is removed from

the additional-root-set.

58

Part IV

Experiments

9 Experiments and Results

In this section we will present some benchmarks we made with our system,

and we will compare it with other systems, namely the Tracing garbage

collector and the generational garbage collector, both implemented in Jikes.

The heap size of the virtual machine is 20MB. In all test runs of AGC, the

size of the cyclic heap is 20% of the size of the total heap.

First we will measure the overhead of write barriers of our system. To do

this, we execute some applications of the Dacapo benchmark suite, version

2006-10, without any changes. The Dacapo benchmark suite is described in

[8].

Afterwards, we will start some programs which take use of cyclic allocation.

The JLayer MP3 encoder and the monte-carlo application of the Grande

Java Benchmark Suite. This benchmark suite is described in [18]. We will

start annotated and unannotated versions of the programs. For the monte-

carlo application, we will show that most of the performance boost of cyclic

allocation comes from few allocation sites.

At last we present a small self-written program, consisting of just one cyclic

allocation site which is executed one million times. This program is ideal for

cyclic allocation, and the results show the capabilities of our method.

The tests were performed on system with a 2.16 GHz Intel Core Duo processor

and 4 GB memory.

59

9.1 Dacapo Benchmark Suite

The Dacapo benchmark suite is a very popular Java benchmark suite. We

executed the programs of Dacapo to measure the overhead of AGC in an

unchanged system. Thus we started the tests with both AGC and a Tracing

garbage collector. As the most important source of overhead is the write

barrier, we additionally ran the benchmarks with a generational garbage

collector. This garbage collector uses a write barrier too. Nevertheless, it is

used in most general-purpose virtual machines.

We started seven programs of Dacapo, each program was executed �ve times

on all three system. Table2a contains the average results of the test runs.

The �rst column contains the names of the benchmark programs, the second,

the forth and the sixth column contain the runtime of the tests in millisec-

onds. We de�ned the runtime of the Tracing garbage collected system as our

baseline. The third, the �fth and the seventh column contain the runtime

of the benchmarks in percent according to this baseline. Table 2b shows the

standard deviation.

The overhead is between 5% and 56%. An overhead of 56% is a lot. On

the other hand, the programs with the most overhead in AGC, namely the

programs �bloat� and �pmd�, also have an enormous overhead in the system

using the generational garbage collector. This means that these programs

su�er a lot from the write barrier.

The write barrier can be very expensive. The following benchmark tests will

show the results of AGC executing adapted programs.

9.2 JLayer MP3 Encoder

We used the JLayer MP3 encoder1 to test our system because it consists

of one big cyclic calculation. Moreover, MP3 encoding is used in real-time

applications, which is one of our targets. As we are only interested in the

1www.javazoom.net/javalayer/javalayer.html

60

A
G
C
(i
n
m
s)

A
G
C
(i
n
%
)

G
en
.
G
C
(i
n
m
s)

G
en
.
G
C
(i
n
%

T
ra
ci
n
g
(i
n
m
s)

T
ra
ci
n
g
(i
n
%
)

b
lo
at

12
21
02
m
s

15
6.
01
%

95
25
7m

s
12
1.
71
%

78
26
4m

s
10
0.
00
%

ch
ar
t

82
90
4m

s
11
2.
19
%

73
21
1m

s
99
.0
7%

73
89
6m

s
10
0.
00
%

fo
p

11
37
9m

s
10
5.
07
%

10
63
9m

s
98
.2
4%

10
83
0m

s
10
0.
00
%

jy
th
on

94
11
7m

s
12
5.
27
%

61
09
5m

s
81
.3
2%

75
12
9m

s
10
0.
00
%

lu
in
d
ex

61
01
7m

s
11
7.
89
%

54
93
2m

s
10
6.
14
%

51
75
7m

s
10
0.
00
%

p
m
d

84
53
7m

s
13
2.
12
%

75
61
5m

s
11
8.
18
%

63
98
5m

s
10
0.
00
%

x
al
an

61
46
5m

s
11
9.
83
%

53
63
5m

s
10
4.
56
%

51
29
5m

s
10
0.
00
%

(a
)
A
ve
ra
g
e
re
su
lt
s

A
G
C

G
en
er
at
io
n
al

G
C

T
ra
ci
n
g
G
C

b
lo
at

63
m
s

14
2m

s
42
m
s

ch
ar
t

51
m
s

92
m
s

84
m
s

fo
p

18
m
s

68
m
s

13
m
s

jy
th
on

65
m
s

5m
s

65
m
s

lu
in
d
ex

71
m
s

75
m
s

94
m
s

p
m
d

11
5m

s
10
4m

s
60
m
s

x
al
an

13
7m

s
19
9m

s
18
8m

s

(b
)
S
ta
n
d
a
rd

d
ev
ia
ti
o
n

T
ab
le
2:

R
es
u
lt
s
of

th
e
D
ac
ap
o
b
en
ch
m
ar
k
su
it
e

61

(a) Average results (b) Standard deviation

Figure 19: Results of the JLayer mp3 encoder test runs

memory behavior of the program, we removed the calculation unit of the

encoder. This improves the signi�cance of the results, but it does not favor

a particular system.

We started an annotated and an unchanged version of the MP3 encoder in

all three test systems. Every combination was executed 20 times.

The results can be seen in Figure 19. They are very surprising, because AGC

is faster than the Tracing even in the unchanged version. The reason for this

is the way how a computer can use its memory, as explained below.

9.2.1 Alignment

Data loaded from the memory into the CPU always has the same size. When

the size of the data is greater than this portion, more than one operation is

required to load it. Moreover, a portion cannot start anywhere in memory.

Therefore, it is possible that data has the size of one portion, but still it

cannot be loaded in one operation.

This is illustrated in Figure 20: The three �elds represent the portions of

62

(a) Aligned data (b) Unaligned data

Figure 20: Alignment of data in memory

memory which can be loaded from memory in a single operation. �Data�

represents the data which should be loaded. It is possible to load all data

in a single step. This can be done in the settings of Figure 20a. If the data

is not aligned, as one can see in Figure 20b, two operations are required,

because Field1 and Field 2 have to be loaded.

This phenomenon happened in the test runs of the mp3 encoder. Lots of data

are used which have exactly the size of one portion. Anyway, the alignment

of the data in the Tracing system was not good. Lots of load-operation

required two steps. Every object in AGC has some additional header bytes

for reference counting. These additional bytes �xed the alignment of the data

and increased the performance of the system.

9.2.2 Analysis

Now we are able to analyze the results. By annotating the program we

slightly improved the performance of all three systems. However, these

changes do not favor AGC. The garbage collector is not triggered very often

during the execution of the mp3 encoder.

To test the e�ects of bad alignment, we started the benchmarks of the tracing

system again, but this time we added some bytes to the header of every

object, as we did it in AGC. The results are presented in Figure 21. AGC

bene�ts much more of the annotations than the changed tracing system.

63

(a) Average results (b) Standard deviation

Figure 21: JLayer mp3 encoder: AGC vs. tracing with extended header

9.3 Monte Carlo

As the MP3 encoder, calculations with a monte-carlo method run regularly

in cycles. The original program was taken from the Grande Java Benchmark

Suite, described in [18]. It was not di�cult to annotate the whole application.

Again, we test the same three memory management systems. This time, we

start with three implementations of the monte-carlo program: An unchanged

version, a fully-annotated version, and one implementation, which contains

annotations for one allocation site and its sub-allocation sites. The sub-

allocation sites are called by the main allocation site.

Every system/program combination was executed 20 times, Figure 22 shows

the results. The �rst three columns are the result of AGC, the second three

columns present the results of the generational garbage collector, and the

third three columns illustrate the results of the tracing garbage collector.

The �rst column stands for the results of the fully annotated program, the

second column represents the party annotated program, and the third column

stands for the original program.

As one can see, the annotation does not change a lot for the purely garbage-

64

(a) Average results (b) Standard deviation

Figure 22: Results of the monte-carlo benchmark

collected systems, but with AGC, the annotated program is 22% faster. How-

ever, half of the performance increase is gained in just one allocation site.

This shows that even few annotations can have a great gain.

The generational garbage collector is faster than tracing because the program

has some permanent data, but all other objects have a very short live-time.

The generational garbage collector processes the permanent data only once,

whereas tracing checks it at every collection run.

We also counted the number of garbage collections required for the anno-

tated version of the monte-carlo benchmark. The tracing system requires

13 collections, whereas AGC only starts the garbage collector twice. This

reduction is the main source of the runtime improvement of AGC.

9.4 Cyclic Allocation Program

This benchmark is an extreme corner case. Anyway, it shows the improve-

ment a program can have by using AGC. It just allocates an object one-

million times, without using the object. In AGC, the object is allocated in a

cyclic bu�er, the other systems have to collect the dead objects in a collec-

tion run. Again, we started all three systems with both an annotated and

65

(a) Average results (b) Standard deviation of the results

Figure 23: Results of the cyclic allocation program

an unchanged version.

The results are illustrated in Figure 23. The �rst pair of columns stands for

AGC, the second for the generational garbage collector, and the third for

the Tracing garbage collector. The �rst column of every pair represents the

annotated program, the second column stands for the unchanged program.

The annotation improves AGC enormously, because no garbage collection is

required at all. Therefore, it is ten times faster than the Tracing system.

Moreover, the AGC results are very constant, as the standard deviation is

just 1 millisecond.

The di�erence between the two systems can be increased by �lling the heap

with permanent data. Garbage collection is then started more often. This

was done in a more extreme test case. AGC was 40 times faster than Trac-

ing, by just 100.000 allocations, whereas the permanent data did not a�ect

AGC at all. The runtime of the system with generational garbage collection

was not a�ected too, because it only collects the nursery and ignores the

permanent data in the mature space.

66

9.5 Summary

The benchmarks showed that AGC has some overhead because of the write

barrier. Nevertheless, when annotations are used, the performance of AGC

improves. The system bene�ts a lot if short-living objects are handled by

cyclic allocation, because the number of garbage collections is reduced sig-

ni�cantly. The system even bene�ts if permanent data is handled by cyclic

allocation: Permanent data is the big shortcoming of Tracing. It has to be

processed in every collection run, but it yields nothing. If permanent data is

ignored by the garbage collector, more memory is deallocated in less time.

67

Part V

Conclusions

10 Conclusions

This section concludes the master thesis. The �rst part of the thesis in-

troduced some important aspects of memory management. Afterward, we

described the expiration class analysis, a powerful way to analyze existing

and to develop new memory management systems. It is easy to use, and the

results are very revealing.

We discovered that explicit memory management has the problem of correctly

de�ning its expiration events. Garbage collection has either a lack of expira-

tion class management or expiration events are hard to detect. Region-based

memory management and cyclic allocation have the potential to outperform

explicit memory management, but they cannot be used for general purpose.

In the following sections, we introduced the concepts of AGC, our new mem-

ory management system, which we developed on the knowledge we gained

by the expiration class analysis. We combined the correctness of a Tracing

garbage collector with the predictability and performance of cyclic allocation.

First we gave a conceptual overview, then we described the virtual machine,

which we extended with AGC, and at last we presented our implementation.

In Section 9, we presented the benchmarks run with AGC. The results show

that AGC starts with some overhead, but when the programmer gives ad-

ditional information on the structure of the program AGC beats garbage

collected systems in performance and predictability. The number of garbage

collections can be reduced signi�cantly.

68

10.1 Future work

Our system AGC can be improved in several ways:

1. Sometimes it is not easy to annotate a program, because the bu�er size

does not only depend on the allocation site, but also on the number

of parent allocation sites. An allocation site can only be called if its

parent allocation site was called before. It is di�cult to do this by

hand, but the bu�er size of most allocation sites could be calculated

at compile time automatically. This would make the use of AGC more

convenient for the programmer.

2. At the moment, only single-threaded applications are supported by

AGC. A future step would be to support multi-threaded applications.

There are no obvious obstacles to do this, but at the moment, we were

concerned more about the theoretical aspects, which are independent

of the number of threads.

3. A third step would be to try other garbage collectors instead of trac-

ing. For instance, a generational garbage collector already uses a write

barrier. Therefore, the reference counting of AGC would introduce

less overhead than in the current con�guration. Moreover, permanent

memory is not considered in all collection runs, which can reduce pause

times additionally.

4. Furthermore, some allocation sites cannot be handled by cyclic alloca-

tion. Other expiration events and expiration classes could be used for

this kind of objects. It is possible that region-based systems are able

to deal with the shortcomings of cyclic allocation.

69

References

[1] Memory management - explicit class instance allocation, July 2009.

http://www.digitalmars.com/d/2.0/memory.html. 45

[2] E. Albert, S. Genaim, and M. Gómez-Zamalloa Gil. Live heap space

analysis for languages with garbage collection. In ISMM '09: Proceedings

of the 2009 international symposium on Memory management, pages

129�138, New York, NY, USA, 2009. ACM. 42

[3] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D.

Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber,

V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J.

Serrano, J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan,

and J. Whaley. The jalapeño virtual machine. IBM Syst. J., 39(1):211�

238, 2000. 49

[4] B. Alpern, C. R. Attanasio, A. Cocchi, D. Lieber, S. Smith, T. Ngo, J. J.

Barton, S. F. Hummel, J. C. Sheperd, and M. Mergen. Implementing

jalapeño in java. In OOPSLA '99: Proceedings of the 14th ACM SIG-

PLAN conference on Object-oriented programming, systems, languages,

and applications, pages 314�324, New York, NY, USA, 1999. ACM. 50

[5] A. W. Appel. Simple generational garbage collection and fast allocation.

Softw. Pract. Exper., 19(2):171�183, 1989. 25

[6] D. F. Bacon, P. Cheng, and V. T. Rajan. A real-time garbage collector

with low overhead and consistent utilization. SIGPLAN Not., 38(1):285�

298, 2003. 27

[7] D. F. Bacon, P. Cheng, and V. T. Rajan. A uni�ed theory of garbage

collection. In OOPSLA '04: Proceedings of the 19th annual ACM SIG-

PLAN conference on Object-oriented programming, systems, languages,

and applications, pages 50�68, New York, NY, USA, 2004. ACM. 25

70

[8] S. M. Blackburn, R. Garner, C. Ho�mann, A. M. Khang, K. S. McKin-

ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,

M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, B. Moss,

A. Phansalkar, D. Stefanovi¢, T. VanDrunen, D. von Dincklage, and

B. Wiedermann. The dacapo benchmarks: java benchmarking devel-

opment and analysis. In OOPSLA '06: Proceedings of the 21st annual

ACM SIGPLAN conference on Object-oriented programming systems,

languages, and applications, pages 169�190, New York, NY, USA, 2006.

ACM. 59

[9] S. M. Blackburn and A. L. Hosking. Barriers: friend or foe? In ISMM

'04: Proceedings of the 4th international symposium on Memory man-

agement, pages 143�151, New York, NY, USA, 2004. ACM. 56

[10] S. M. Blackburn and K. S. McKinley. Ulterior reference counting: fast

garbage collection without a long wait. In OOPSLA '03: Proceedings of

the 18th annual ACM SIGPLAN conference on Object-oriented program-

ing, systems, languages, and applications, pages 344�358, New York,

NY, USA, 2003. ACM. 26

[11] G. E. Collins. A method for overlapping and erasure of lists. Commun.

ACM, 3(12):655�657, 1960. 22

[12] S. S. Craciunas, C. M. Kirsch, H. Payer, A. Sokolova, H. Stadler, and

R. Staudinger. A compacting real-time memory management system. In

ATC'08: USENIX 2008 Annual Technical Conference on Annual Tech-

nical Conference, pages 349�362, Berkeley, CA, USA, 2008. USENIX

Association. 15

[13] D. Gay, R. Ennals, and E. Brewer. Safe manual memory management. In

ISMM '07: Proceedings of the 6th international symposium on Memory

management, pages 2�14, New York, NY, USA, 2007. ACM. 39

[14] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java(TM) Language Spec-

i�cation, The (3rd Edition) (Java (Addison-Wesley)). Addison-Wesley

Professional, 2005. 48

71

[15] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney.

Region-based memory management in cyclone. In PLDI '02: Proceed-

ings of the ACM SIGPLAN 2002 Conference on Programming language

design and implementation, pages 282�293, New York, NY, USA, 2002.

ACM. 44

[16] N. Hallenberg, M. Elsman, and M. Tofte. Combining region inference

and garbage collection. In PLDI '02: Proceedings of the ACM SIGPLAN

2002 Conference on Programming language design and implementation,

pages 141�152, New York, NY, USA, 2002. ACM. 46

[17] T. Lindholm and F. Yellin. The Java(TM) Virtual Machine Speci�cation

(2nd Edition). Prentice Hall PTR, 1999. 49

[18] J. A. Mathew, P. D. Coddington, and K. A. Hawick. Analysis and

development of java grande benchmarks. In JAVA '99: Proceedings of

the ACM 1999 conference on Java Grande, pages 72�80, New York, NY,

USA, 1999. ACM. 59, 64

[19] J. McCarthy. Recursive functions of symbolic expressions and their

computation by machine, part i. Commun. ACM, 3(4):184�195, 1960.

20

[20] H. H. Nguyen and M. Rinard. Detecting and eliminating memory leaks

using cyclic memory allocation. In ISMM '07: Proceedings of the 6th

international symposium on Memory management, pages 15�30, New

York, NY, USA, 2007. ACM. 28, 29, 30

[21] G. Salagnac, C. Rippert, and S. Yovine. Semi-automatic region-based

memory management for real-time java embedded systems. In RTCSA

'07: Proceedings of the 13th IEEE International Conference on Embed-

ded and Real-Time Computing Systems and Applications, pages 73�80,

Washington, DC, USA, 2007. IEEE Computer Society. 28

[22] D. Ungar. Generation scavenging: A non-disruptive high performance

storage reclamation algorithm. SIGPLAN Not., 19(5):157�167, 1984. 25

72

	I Introduction
	Introduction
	Outlining of this Thesis

	Memory Management
	System Properties
	Time specific properties
	Space specific properties

	II Concepts
	Expiration Class
	Explicit Memory Management
	Explicit Memory Management using a simple free()-statement
	Region-based Explicit Memory Management

	Implicit Memory Management: Garbage Collection
	Tracing Garbage Collector
	Reference Counting Garbage Collector
	Garbage Collection in general

	Implicit Region-based Memory Management
	Cyclic Memory Allocation
	Hybrid Memory Management Systems
	Summary

	AGC: Conceptual Overview
	Expiration Classes and Expiration Events
	Memory Partitioning
	Reference Handling
	Additional-Root Set
	Delayed Deallocation
	User input
	Properties of the System
	Performance
	Correctness
	Memory Consumption

	Summary

	Other Hybrid Memory Management Systems
	Cyclone - Memory Management
	Digital Mars D - Memory Management
	Regions supported by a Garbage Collector

	III Implementation
	Implementation Environment
	Introduction of Java
	Virtual Machine
	Jikes RVM

	AGC: Implementation
	Initial System
	User Input
	Memory Partitioning
	Allocation
	Cyclic Allocation
	Object Model
	Write Barrier
	Additional-Root Set
	Delayed Deallocation
	Marking Phase

	IV Experiments
	Experiments and Results
	Dacapo Benchmark Suite
	JLayer MP3 Encoder
	Alignment
	Analysis

	Monte Carlo
	Cyclic Allocation Program
	Summary

	V Conclusions
	Conclusions
	Future work

