
Short-term Memory

for the C Programming Language

MASTER’S THESIS

to obtain the Master’s degree

at the Faculty of Natural Sciences of the

University of Salzburg

submitted by

Martin Aigner, B.Eng.

Academic supervisor

Univ.-Prof. Dr.-Ing. Dipl.-Inform. Christoph M. Kirsch

Department of

Computer Sciences

Salzburg, August 2012

Acknowledgments

Thanks to Professor Christoph Kirsch and his group for guidance and motivation. I had

a great time working on my masters thesis and you inspired me to give my best.

My special thanks goes to:

Ingrid and Manfred for roots and for wings.

To Christine, after all, for so many things.

To my family and friends, who helped me getting through,

I wouldn’t have made it, without anyone of you!

Abstract

Short-term memory is a memory model for dynamic heap management [1]. Unlike the

traditional persistent memory model implemented in explicit or implicit memory man-

agement systems, objects allocated in short-term memory expire after a finite amount of

time or may be refreshed to extend their lifetime. We propose a concurrent, incremental,

and non-moving implementation of short-term memory for the C programming language

called self-collecting mutators which relies on explicit refreshing information and utilizes

an explicit dynamic memory allocator. We present an extensive performance evaluation

of our implementation using a new benchmark tool called ACDC. Based on size and

lifetime characteristics of dynamic objects in allocation-intensive C programs, ACDC

models a representative workload for dynamic memory allocators. We empirically verify

a small and constant per-object time and space overhead of our implementation and

show competitive performance to the persistent heap management model.

Keywords: Short-term Memory, Dynamic Heap Management, Multi-threaded Alloca-

tor Benchmark

Contents

1. Introduction 9

1.1. Contributions . 10

1.2. Outline of the Thesis . 10

2. Process Memory Concepts 12

2.1. Explicit Dynamic Memory Management 13

2.1.1. Sources of Errors . 15

2.2. Garbage Collection . 17

2.2.1. Reference Counting Collectors . 18

2.2.2. Tracing Collectors . 20

2.2.3. Comparison of Reference Counting and Tracing Collectors 20

2.2.4. Conservative Garbage Collection 22

2.2.5. Drawbacks of Garbage Collection 23

2.3. The Persistent Memory Model . 24

2.4. Summary . 25

3. Short-term Memory Model 26

3.1. Single-threaded Model . 28

3.2. Multi-threaded Model . 29

3.2.1. Global-Time Management . 30

3.3. Sources of Errors . 32

3.4. Summary . 32

4. Self-collecting Mutators in C 34

4.1. Design Decisions . 34

4.1.1. Backwards Compatibility . 35

4.1.2. Representation of Expiration Dates 35

4.1.3. Threads . 36

Contents

4.1.4. Allocator . 36

4.2. Operations of Self-collecting Mutators . 38

4.2.1. Allocation . 38

4.2.2. Time Progress . 39

4.2.3. Expiration Extensions . 43

4.3. Data Structures . 44

4.3.1. Descriptor Root . 44

4.3.2. Descriptor Buffer . 45

4.3.3. Descriptor Page . 47

4.3.4. Descriptor Page List . 48

4.3.5. Expired Descriptor Page List . 49

4.3.6. Dynamically Allocated Management Data 49

4.4. Blocking Threads . 50

4.5. Debug Extensions . 51

4.6. Summary . 52

5. ACDC Benchmark 53

5.1. Characteristics of Dynamic Objects in C Programs 54

5.2. A Notion of Time for a Mutator . 55

5.3. Modeling the Workload . 55

5.3.1. ACDC Runtime Options . 56

5.3.2. Single Mutator Behavior . 58

5.3.3. Multi Mutator Behavior . 63

5.4. Implementation Details . 66

5.4.1. Data Structures . 66

5.5. Summary . 69

6. Experimental Evaluation 70

6.1. Prerequisites . 70

6.1.1. Experimental Setup . 70

6.1.2. Technical Measurement Details 70

6.2. Workload Selection . 72

6.2.1. Services Exercised . 73

6.2.2. Level of Detail . 73

6.2.3. Representativeness . 74

6.2.4. Timeliness . 74

7

Contents

6.3. Experimental Design . 75

6.3.1. Terminology . 75

6.3.2. Factors . 76

6.3.3. Evaluation . 76

6.4. Evaluation of the Important Factors of LIBSCM 82

6.4.1. Collection Strategy . 82

6.4.2. Number of Threads . 83

6.4.3. Time Threshold . 88

6.5. Throughput of LIBSCM Compared to the Persistent Memory Model . . . 90

6.6. Approximation Overhead . 94

6.7. Summary . 97

7. Conclusion 98

7.1. Future Work . 98

A. Source Code of LIBSCM 108

A.1. stm.h . 108

A.2. scm-desc.h . 111

A.3. stm-debug.h . 115

A.4. meter.h . 117

A.5. arch.h . 118

A.6. scm-desc.c . 120

A.7. descriptor page list.c . 131

A.8. meter.c . 137

A.9. finalizer.c . 139

A.10.Makefile . 140

8

1. Introduction

Dynamic heap management systems provide an interface to receive (allocate) and return

(free) memory objects at runtime. There are two types of interfaces, namely explicit

interfaces and implicit interfaces. Both types receive objects through an allocation rou-

tine. They differ in the way of returning memory objects. Explicit memory management

requires the programmer to explicitly return an object to the management system. This

is fast but error prone because it relies on information provided by the programmer which

may be incorrect. Especially in multi-threaded applications concurrent reasoning about

the last use of an object is a non-trivial problem. Implicit memory management systems,

also known as garbage collectors, solve this problem at the expense of runtime overhead

and increased complexity. Also, languages that lack type safety, e.g. the C program-

ming language, increase the difficulty to implement implicit memory management. Both

approaches guarantee dynamic objects to be persistent for the time between receiving

and returning the object. Therefore, we call the model where objects are explicitly or

implicitly returned the persistent memory model.

Short-term memory [1] is a memory model where objects expire after a finite amount of

time which makes it unnecessary to return dynamic objects either explicitly or implicitly.

In this work we present a concurrent, incremental, and non-moving implementation of

short-term memory called self-collecting mutators followed by an extensive performance

analysis.

“There is as yet no standard suite of benchmarks for evaluating multi-

threaded allocators.” [2]

This statement from Berger et al. has its origin in the year 2000 and is still valid today.

Most recent performance evaluations of dynamic memory allocators are based on simple

simulations of allocations patters, e.g., the Larson benchmark [3], or using allocation

traces. We present a new benchmark tool designed to create a representative workload

1. Introduction

based on lifetime and size characterisitics of dynamic objects observed in allocation

intensive applications in [4] and [5] and extend these characteristics to multi-threaded

allocation patterns including shared objects.

1.1. Contributions

The main contribution of this work is an efficient and scalable, concurrent implementa-

tion of self-collecting mutators for the C programming language. Furthermore we con-

tribute a multi-threaded memory allocator benchmark tool called ACDC which models a

typical allocator workload. We use ACDC to perform a detailed performance evaluation

of our implementation of short-term memory.

1.2. Outline of the Thesis

The thesis starts with an overview of process memory concepts, i.e., the way a pro-

cess organizes its address space. After that we describe the short-term memory model

and present the implementation self-collecting mutators. Then we introduce ACDC, a

multi-threaded allocator benchmark tool that we use for the final part of the thesis; an

extensive performance evaluation of our implementation.

Chapter 1, Introduction: We first present te problem and give an outline of the

thesis.

Chapter 2, Process Memory Concepts: In this chapter we given an overview of

existing techniques to manage dynamic memory objects and discuss the notion of liveness

of such objects.

Chapter 3, Short-term Memory Model: Here we present the short-term memory

model for managing dynamic objects. We explain the meaning of expiration dates in

the context of thread-local and multi-threaded time management.

Chapter 4, Self-collecting Mutators in C: In this chapter we describe our concurrent

implementation of short-term memory in C. We define the memory management routines

and the data structures that enable full incrementality and constant-time operations.

10

1.2. Outline of the Thesis

Chapter 5, ACDC Benchmark: The ACDC benchmark tool models a representative

allocator workload. In this chapter we describe the characteristics of dynamic memory

objects and the implementation of ACDC.

Chapter 6, Experimental Evaluation: We perform an extensive performance eval-

uation of our implementation of short-term memory. We use ACDC to generate con-

figurable workloads for self-collecting mutators to identify the important factors and

quantify their impact on performance.

Chapter 7, Conclusion: We conclude the thesis in the last chapter and discuss future

work.

11

2. Process Memory Concepts

On systems that use the GNU C library (GLIBC) [6], processes allocate memory in

two major ways: by exec and programmatically [7]. Exec is the operation of creating

a virtual address space, loading the program into it and executing the program. The

virtual address space is logically divided into segments, i.e., independent and contiguous

subsets of virtual addresses [8]. Three important segments are the text segment, the

data segment and the stack segment. When the program file (executable) is loaded, exec

allocates the necessary space inside the newly created address space to store the data

from the executable including the program instructions and static or global variables.

This data is stored in the text segment. Declaring a static or global variable in a

C program is called static memory allocation. The necessary space is allocated once

as part of the exec operation and is never freed until the termination of the process.

After the process starts to execute, it uses programmatic allocation to get additional

memory. A C program that uses GLIBC can perform programmatic allocation in two

ways: automatically and dynamically. [7]

Automatic memory allocation happens when the programmer declares automatic vari-

ables, e.g. a function argument or a local variable. The space for an automatic variable

is allocated, when the compound statement that contains the variable declaration is

entered, and is freed, when that compound statement is exited. Automatic variables are

usually allocated on the process’ stack which resides in the stack segment. The stack

segment grows as the stack grows, but it does not shrink as the stack shrinks. [7]

In case the amount of memory that is needed by a program depends on factors that are

not known before the program runs, static or automatic memory allocation cannot be

used since they can only rely on information known before execution. The technique that

allows a process to gain and manage additional memory at runtime is called dynamic

memory allocation. Note that the C language [9] by itself only supports static and

automatic allocation. Dynamic allocation requires support by the operating system and

2.1. Explicit Dynamic Memory Management

a runtime system like GLIBC. The dynamically allocated memory usually resides in

the data segment. The data segment can be preallocated by exec and the process can

extend and shrink it using system calls like brk [10]. However, a more common way to

dynamically allocate memory at runtime is through library functions that we describe

next.

In this work we focus on the GNU C library (GLIBC), which is the de-facto standard

C library for most systems based on the Linux kernel [6]. Furthermore we limit the

discussion on C to the ISO/IEC 9899:1999 standard [11] informally known as C99.

2.1. Explicit Dynamic Memory Management

Dynamic memory management is performed in C using library functions usually called

malloc and free [12]. This functions are implemented in the C standard library. Listing

2.1 gives an example of dynamic memory allocation in a C program. Any Unix-like

operating system distribution provides a C library that implements an interface to system

calls to simplify and standardize basic operations like input/output and also memory

management. The implementation of the memory management functionality is often

called the allocator. It consists of algorithms and data structures to manage the address

space of the data segment. In memory management terminology, this address space

including the management metadata is called the heap.

13

2. Process Memory Concepts

1 #include <s t d l i b . h>

2 int main (int argc , char ∗∗ argv) {
3 struct a {
4 int va l ;

5 char c ;

6 } ;

7 struct a∗ a pt r = (struct a ∗) mal loc (s izeof (struct a)) ;

8 a ptr−>va l = 5 ; /∗ acces s through po in t e r on ly ∗/
9 a ptr−>c = ’a’ ; /∗ acces s through po in t e r on ly ∗/

10 f r e e (a p t r) ;

11 return 0 ;

12 }

Listing 2.1: Example of a C program that uses dynamic memory through the standard

C library.

Whenever a process demands additional memory it can call malloc to retrieve a pointer

to a contiguous block of memory on the heap. This block is said to be dynamically

allocated by the process and it can be accessed through the pointer that malloc returned.

A pointer is the only way to refer to dynamically allocated memory. When the process

calls malloc again to acquire another block, it is guaranteed that those two blocks do

not overlap, i.e., those two sets of contiguous addresses are disjoint.

When a block of dynamically allocated memory is no longer needed by the process, it

can be deallocated by calling free. After that, an access to this memory is considered to

be a runtime error and the pointer to this memory region is called a dangling pointer.

Memory, that is no longer needed, but not freed, is called a memory leak. This causes

the overall memory consumption to be higher than necessary. The programmer must

take care that every object (dynamically allocated piece of memory) is deallocated when

it is no longer used and that no dangling pointer is dereferenced anymore. This must

be done explicitly by the programmer and is therefore called explicit dynamic memory

management.

The GLIBC implements additional functions like realloc to resize objects and calloc to

allocate zero-initialized arrays. However, since both realloc and calloc can be expressed

using malloc and free, we focus only on this functions for explicit dynamic memory

management.

14

2.1. Explicit Dynamic Memory Management

2.1.1. Sources of Errors

The fact that explicit memory management relies on the correct use by the programmer,

makes it prone to errors. We now take a closer look at how memory management errors

can negatively affect the execution of a program.

Premature free or dangling pointer is a programming error where a pointer to an

object is referenced after it was freed. Depending on the implementation details of the

memory management system this error can result in different scenarios. Either, it is

possible that the program crashes if the object’s address is no longer part of the data

segment or that dereferencing the dangling pointer causes unpredictable behavior, if a

new object took the place in the mean time. [13]

Missing and deferred free calls are a problem that commonly occurs in systems

that use explicit dynamic allocation. For the programmer it is easy to know where to

place a malloc call. This can be done right before the memory is used. In contrast, it is

often hard to know when an object is not needed anymore. The correct placement of a

free call is right after the last use of an object. However, the last use of an object may

depend on conditions that are dynamic and therefore the correct place of deallocation is

on different code paths. When programs grow complex, the task of finding the last use of

an object is a challenging task and therefore error prone. Free calls, that are not placed

right after the last use, temporarily increase the memory consumption of the process.

While deferred deallocation can still be tolerated to simplify the code, a missing free

call causes the corresponding memory to be lost until the program terminates. Such a

memory leak can be a serious problem for long-running processes such as tasks running

on servers or control systems. [13]

Invalid frees occur when an illegal address is passed to the free call. Free expects a

pointer that was previously returned by malloc. C allows a technique called pointer

arithmetic, where the arbitrary manipulation of a pointer is possible. Although pro-

grammers may find this a powerful tool, its use is highly error prone. For example,

it allows a very simple way to iterate over the addresses in a block of memory that

was allocated via malloc. However, doing so yields the risk of programming errors, for

example by passing a wrong pointer to the corresponding free call. A special case of

an invalid free is called double free. Here, a pointer to a memory object is passed to

the free call more than once. The consequences are fatal again. Double free can cause

15

2. Process Memory Concepts

the process to crash or it unpredictably changes the behavior of the allocator because

allocators have to keep track about every object that was freed by the process. This

can be implemented by a data structure called free list. For efficiency reasons, the free

list can be stored in the very same location where the freed object was stored before.

When a free call is performed on the same location again (or an invalid location), it is

possible to overwrite parts of the free list and therefore corrupt the heap management

metadata. [13]

Violating block boundaries is also caused by the fact that C allows writing to ar-

bitrarily forged addresses. A block of memory obtained by malloc has a start address

(the pointer returned by malloc) and a fixed size. Similar to the free list, the alloca-

tor also keeps meta data for allocated objects like the size of the object. A straight

forward way of implementation is reserving some space for this information in front of

the object. This object header contains information that is important for the allocator,

e.g., for later deallocation. The pointer that is returned to the process is the address

right after the object header. This defines a lower and an upper bound for addresses

that the process may access. It is easy to see that writing to an address right after that

boundary may corrupt the object header. Similarly, writing to an address before the

boundary may destroy the object header or contents of a subsequent object. A memory

access outside the bounds of objects may even direct to an address outside of the data

segment. This so-called segmentation fault is well known to every C programmer and

causes the operating system to terminate the process. [13]

To sum up there are two problems with explicit dynamic memory management in C.

Firstly, pointers can be altered in an unsafe way, which is very error prone. Secondly,

the correct placement of free calls is a challenging task. Especially in multi-threaded

and complex applications the use of dynamically allocated data structures becomes very

tricky. Both types of bugs are hard to track down because they can vary depending on

runtime parameters e.g. input data or execution time. Tools like Valgrind [14] help to

find memory errors during development, but their introduced runtime overhead makes

them unattractive for production systems.

In this work, we do not intend to question certain features of the C programming lan-

guage. Altering pointers can be a powerful tool, if used correctly and it can be dangerous

if done carelessly. Since we are primarily interested in the use of memory management

functionality, we only discuss the problem of misplaced free calls.

16

2.2. Garbage Collection

2.2. Garbage Collection

In the previous section we have discussed the problems that occur when the responsibility

for handling dynamic memory is burdened to the programmer. The biggest problems for

programmers when developing software systems is complexity and one of the best ways to

deal with complexity is abstraction. Abstraction is already in place for the management

of static variables and automatic variables in most programming languages including C.

The programmer does not have to take care where to allocate global variables and how

to set up stack frames. High-level programming languages tend to make also use of

an abstraction for heap objects. The technique that enables this abstraction is called

garbage collection (GC) [15]. Garbage collectors keep track of all objects allocated on

the heap and regularly determine which objects are no longer needed and can therefore

be freed.

Runtime systems for the C programming language usually do not implement garbage

collectors because of the unsafe nature of the language. Nevertheless, such systems exist

[13] and therefore we introduce the basic concepts of garbage collection after introducing

some important general terms of memory management.

Roots of computation: The values that can be directly manipulated by a program are

the content of the registers, the automatic variables on the stack and the global variables.

These values form the roots of a computation. Dynamically allocated memory objects

are only accessible through pointers that are stored in the roots or by following a chain

of pointers that start at the roots.

Pointer reachability: An object that can be referenced by either a pointer in the roots

or by a chain of pointers is said to be reachable. If it is not, then we call such an object

unreachable. Note that in languages like C every address inside the heap segment is

always reachable by the manipulation of pointers. However, we restrict the discussion

on reachability to a safe use of a language, i.e., no direct manipulation of pointers.

Object liveness: An object on the heap is live, if it’s address is held in a root, or there

is a pointer to it in another live object. Another way to informally define object liveness

is pointer reachability starting at the roots.

17

2. Process Memory Concepts

We now describe a simple formalism to combine these terms and properties. Let Roots

be the set of references in the roots of computation and Objects the set of heap objects.

Let ↪→ be the “points-to” relation defined as follows: for every M ∈ Roots ∪ Objects

and every heap object N ∈ Objects, M ↪→ N ⇐⇒ M holds a reference to N . [15]

Intuitively, the set of live objects consists of all heap objects that maintain pointer

reachability starting at the roots, i.e., an object O ∈ Objects is life if and only if

∃n ∈ N, ∃R ∈ Roots and ∃Mi ∈ Objects, 0 < i ≤ n such that

R ↪→M1 ↪→M2 ↪→ . . . ↪→Mn ↪→ O

The set of all live objects is therefore described by the transitive closure of the points-to

relation ↪→ starting at the roots, i.e., the least set Live where

Live = {O ∈ Objects : (∃R ∈ Roots : R ↪→ O) ∨ (∃M ∈ Live : M ↪→ O)}

Note that this definition of the set of live objects is a conservative over-approximation

of all objects that are potentially accessible. It contains objects that have references to

them but might never be used by the program anymore. [15]

Garbage collection includes the process of determining an object’s liveness. This can

be done either directly or indirectly. Direct methods require the objects to keep track

of all the references that point to it. Indirect methods make use of the references to

other objects that are stored in the roots or live objects. The most common direct

method is reference counting and the most important indirect method is called tracing.

These two methods are fundamental algorithms for storage reclamation and are actually

algorithmic duals of each other. [16]

2.2.1. Reference Counting Collectors

We have already stated that most allocators maintain additional metadata for each

object on the heap. The reference counting algorithm requires an extra field per object

called reference count. This is a positive integer starting from zero that gives the number

of references that point to this object. Such references can be stored either in the roots

of a program or in other heap objects.

18

2.2. Garbage Collection

Let refs be a mapping refs : Objects × Objects → N0 and refs(Oi, Oj) 7→ the number

of references from Oi to Oj. The reference count of an object is given by the mapping

rc : Objects→ N0 where

rc(O) 7→ |{R : R ∈ Roots ∧R ↪→ O}|+
∑

Oi∈Objects

refs(Oi, O)

gives the number of references to O from the roots and other objects including itself. [15]

Initially the reference count of an unused chunk of memory is zero. When an object

is allocated from e.g. a free list, the reference count is set to one because the first

reference to the object is created. When such a reference is copied to another reference

or the reference is passed as a function parameter and is thereby copied on the stack,

the reference count of the object needs to be incremented. When a function returns, the

stack frame becomes invalid and so do all references to heap objects stored in this stack

frame. For each of this objects the reference count must be decremented. Similarly,

when a pointer to an object is overwritten the reference count of the previous pointer

target must be decremented. When the reference count of an object becomes zero this

means that no pointers to this object remain. There is no legal way for the program

to re-establish a reference to this object and so the object is no longer accessible. The

object can be deallocated or returned to the free list. In the same step, all objects that

are referenced from within this object need to have their reference count decremented

accordingly. Note that this can cause a chain reaction if for example the last reference

to a singly linked list is deleted. Deallocating the head node decrements the reference

count of the next node and so on.

Incrementing and decrementing the reference count of an object can be done explicitly

by the programmer or implicitly by code that was generated by the compiler. The latter

approach is usually taken by languages that directly support garbage collection through

reference counting.

Reference counting indirectly computes the set Live that we have defined above. It

assumes that every object is live until a reference count of zero proves the opposite. In

this way it is guaranteed that Live ⊆ {O ∈ Objects : rc(O) > 0} because we defined

Live to be the set of all reachable objects. A Object O where rc(O) = 0 is not reachable

hence it is not live.

19

2. Process Memory Concepts

2.2.2. Tracing Collectors

Tracing garbage collection was the first algorithm for automatic storage reclamation [17].

Under this scheme dead objects are not reclaimed immediately but remain unreachable

and are collected when a certain event takes place, e.g. a memory limit is exhausted

or the collection is triggered explicitly. At this point the process is suspended and the

garbage collection routine takes over.

The garbage collection routine consists of two phases. The mark phase and the sweep

phase. Tracing GCs are therefore often called mark-sweep collectors. Starting from the

roots, the mark phase performs a traversal of all objects that are reachable and hence

are life by definition. All live objects are marked by setting a bit in the object header.

The sweep phase performs the actual cleanup. The collector iterates over the whole set

of objects and the non-marked objects are freed. The live objects survive and their mark

bit is removed for the next collection cycle.

Tracing collectors directly compute the Live set defined above. They assume every

object to be garbage until the mark phase proves the opposite. Starting from an empty

set, Live = ∅, all Objects are marked as live that are reachable from Roots:

Live = Live ∪ {O ∈ Objects : ∃R ∈ Roots : R ↪→ O}

In a recursive step, all objects are marked that are reachable from objects that are

already marked as live:

Live = Live ∪ {O ∈ Objects : ∃M ∈ Live : M ↪→ O}

The recursion terminates when the set Live reaches a fixed point. [15]

2.2.3. Comparison of Reference Counting and Tracing Collectors

A strength of reference counting GC is the fact that the memory management overhead

is distributed throughout the computation [15]. The management of live and garbage

objects is interleaved with the execution of the application logic. This contrasts with

20

2.2. Garbage Collection

(non-incremental) tracing algorithms in which the user thread is suspended while the

garbage collector performs its work. This makes reference counting schemes useful for

applications where a predictable response time is needed such as reactive and real-time

systems.

A dynamic property of many typical programs is that most objects are short-lived [4].

Reference counting schemes can help to exploit that by reusing objects immediately

after they have become unreachable. This can have a positive impact on data locality

and cache performance. In tracing schemes dead objects remain unused until the next

mark-sweep stage is finished. Note that this also increases the amount of memory that

needs to be reserved for an application that uses a tracing GC.

Another disadvantage of reference counting is the high cost that is required to maintain

the reference count invariant. Each time a pointer is overwritten, the reference count of

both the old and the now target object needs to be updated. In tracing schemes, pointer

updates have no additional costs associated with it.

Reference counting techniques also introduce a per-object space overhead for the refer-

ence count which can be as large as a pointer. In practice however, reference counts will

not become this large and smaller fields can be used in combination with an overflow

strategy. [15]

The major drawback of reference counting algorithms is their inability to collect cyclic

structures. A doubly linked list with only two nodes is already such a cyclic structure

and they are used very often. Consequently, reference counting collectors need some help

to deal with cyclic structures. One way to deal with cycles is to combine a reference

counter with a tracing scheme. This already is an example of a hybrid based on the two

fundamental concepts tracing and reference counting [16].

The major drawback of basic tracing schemes is their stop-the-world nature. During a

collection run the mutator is not allowed to change the state of the roots and the heap

objects. Incremental tracing collectors can reduce the pause time of the mutator but

they introduce a lot of complexity in the collection algorithm to deal with the changing

mutator state, especially if predictable pause times must be guaranteed [18] [19].

21

2. Process Memory Concepts

2.2.4. Conservative Garbage Collection

Although not being the origin of garbage collection, object oriented languages often

use built-in automatic storage reclamation. The type system of such languages support

garbage collection because the layout of objects is known at runtime. The C program-

ming language does not provide runtime information about the used data structures.

Furthermore there are no guarantees that static types are used as intended at runtime.

In C the programmer can alter pointers and write arbitrary data to arbitrary memory

locations. A garbage collector will have little information about where roots are to be

found, the stack frame layout, which memory locations store pointers and which to not.

To be practically usable and compatible with existing C programs, a garbage collec-

tor for C will neither get support by the compiler nor the runtime system. Garbage

collectors that have to operate under such restrictions are called conservative collectors.

The Boehm-Demers-Weiser collector is a fully conservative garbage collector that does

not require any assistance from a compiler or runtime system [20]. A program using

this garbage collector logically uses two distinct heaps. One heap for explicitly managed

objects and another one for automatically managed objects. Under the restriction that

objects from one heap do not point to objects on the other one, the collector can be

used alongside standard libraries and traditional C code using malloc and free.

First of all, a conservative GC has to find the roots. They can be found in registers,

static areas of the program and the stack. Although it is possible to access this locations,

doing so heavily depends on the architecture of the target machine. This implies that a

conservative GC must provide support for a given architecture. Finding the bottom of

the stack requires knowledge of the runtime system or using heuristics like checking the

address of a local variable in the main routine. [20]

Identifying a pointer is the second main problem that needs to be solved. Misidentifica-

tion of a pointer might cause the referenced data to be recycled as garbage. This creates

dangling pointers that can crash the program. On the other hand, if the collector is too

conservative, it risks retaining too much garbage and crashing the program, because it

runs out of space. Consequently, the collector needs to take some care to avoid misiden-

tification. An object is only marked if the pointer passes each of three tests. Firstly, the

potential pointer must refer to the heap. Secondly, the heap block that contains this

object has been allocated. For this constraint the heap is organized into blocks, that

22

2.2. Garbage Collection

contain objects of the same size. The third constraint checks if the offset of the object

in the block is a multiple of the object size for this block. Only if the pointer passes

these tests, the corresponding object is treated as automatically managed memory using

a tracing scheme. [20]

The problems with conservative garbage collection can be mitigated by relaxing the

assumptions about the missing cooperation by the compiler and the runtime system.

For example in [21], Boehm et al. suggest a modified C compiler that omits optimiza-

tions which could break the garbage collection and that also checks the source code for

garbage-collector-safety.

2.2.5. Drawbacks of Garbage Collection

A garbage collector solves the problem of classical memory bugs: dangling pointers and

memory leaks. However, GCs introduce their own problems and also does not solve the

memory leak problem completely. If a data structure is no longer used by a mutator,

but at some place a reference to this data structure remains, the garbage collector will

never recycle this memory. This problem is called live memory leak because from the

point of view of the collector this data structure is live whereas from the point of view

of the mutator it is not. [15]

A second general problem that comes with garbage collection is the resource penalty.

Automatic garbage collection takes both time and space. The computation of reacha-

bility always takes time and the necessary meta data always takes space. Mark-sweep

collectors also suffer from an increased overall memory usage because of the deferred

collection phase. This are the main costs that must be paid for simpler programs and

to avoid memory bugs. [15]

Finally, a garbage collector adds additional complexity to the system. Modern hybrids

of tracing and reference counting schemes are very complex and building them correctly

is a difficult task. In addition to the complexity, a garbage collector increases the code

size of an application. This problems often discourage the use of garbage collection in a

restricted environment like embedded and real-time systems.

23

2. Process Memory Concepts

2.3. The Persistent Memory Model

So far we have discussed the advantages and disadvantages of explicit memory manage-

ment and garbage collection. In this section we look at the similarities of this traditional

approaches.

An ideal heap management system partitions the set of heap objects in two disjoint sets

of objects. One set contains the objects that are needed by the mutator in the future and

the other set contains the objects that are not needed anymore. We call them the needed

set of objects and the not-needed set of objects, respectively [1]. Heap management is

correct if the needed set of objects is always maintained. A trivial implementation of

correct heap management is bump pointer allocation without freeing objects. However,

such a behavior is not desirable because a general mutator will run out of space and

crash. Therefore we require a heap management to be bounded, that is, the not-needed

set of objects is always eventually reclaimed by deallocation or reuse.

Explicit heap management (if used correctly) and garbage collectors implement dif-

ferent approximations of the needed and not-needed set of objects. Explicit memory

management using malloc and free under-approximates the not-needed set of objects

by explicitly deallocating a subset of the not-needed set, i.e., by calling free on objects

that are no longer needed by the mutator. Reference counting garbage collectors also

under-approximate the not-needed set by reclaiming objects that are not referenced by

the mutator anymore and can therefore no longer be needed. On the other hand, trac-

ing collectors over-approximate the needed set of objects in the mark-phase where the

set of reachable objects is calculated. Reachable objects are potentially needed by the

mutator, i.e., the needed set of objects is a subset of the reachable objects. [1]

The common property of explicit heap management and garbage collection is that an

allocated object is guaranteed to be persistent in memory until it is either freed explicitly

or reclaimed implicitly by non-reachability. We call this the persistent memory model.

Objects in the needed set are maintained without further attention whereas objects in

the not-needed set require action, either through explicit freeing or through garbage

collection. [1]

The problems with malloc/free and garbage collection can be described very well using

this memory model. Missing free calls increase the gap between the not-needed set and

its approximation. This is what we usually call a memory leak. A premature free call

24

2.4. Summary

operates on the needed set of objects and violates the correctness requirement for heap

management. This results in a dangling pointer. Additionally, garbage collectors allow

for a potentially unbounded gap between the needed or not-needed set and its approx-

imation that is calculated by either tracing or reference counting. This phenomenon is

known as reachable memory leak. [1]

2.4. Summary

In this chapter we explored the traditional ways of heap management using malloc/free

and garbage collection. We discussed the advantages and disadvantages of this tech-

niques and how the differences between them affect the way a process may use dynamic

memory. From the similarities of explicit memory management and garbage collection

we derived the persistent memory model and showed that the problems with both mem-

ory management systems directly draw the conclusion from the model.

25

3. Short-term Memory Model

The already discussed memory model deals with objects that are persistent from the

moment they are allocated until the moment they are freed. We call this model the

persistent memory model. In this section we describe a memory model where objects

are not persistent until further notice, but expire after a finite amount of time. This

memory model we call the short-term memory model [1].

In short-term memory, every allocated object has an attached expiration date and the

mutator has a notion of time, a clock for example. When the clock reaches the expiration

date of an object, the object is said to be expired. An expired object will eventually

be reclaimed by a memory management that implements short-term memory. When a

mutator needs an object beyond its expiration date, the object can be refreshed before

it expires. In contrast to the persistent memory model, here the needed set of objects

needs attention by refreshing objects whereas the not-needed set does not require any

action taken by the mutator. [1]

The short-term memory model introduces two new disjoint sets of objects. The not-

expired set of objects and the complementary expired set of objects. Note that this

two sets only exist if time is guaranteed to advance. Otherwise all objects will never

expire, i.e., they are permanent. Like the persistent memory model, short-term memory

over-approximates the needed set of objects by the not-expired set of objects. However,

instead of reachability or explicit freeing, short-term memory uses the expiration date

of the objects and the speed of the time advances to control the approximation. Figure

3.1 illustrates the logical partitioning of the heap and the approximation of the needed

set. [1]

Heap management is correct, based on the short-term memory model, if the needed set

is a subset of the not-expired set of objects. It is bounded if the expired set always

eventually contains the not-needed set and time advances. Again, if time does not

Heap

not-expired

reachable

needed

controlled by refreshing

co
n

tr
o

ll
ed

b
y

ti
m

e
ad

v
an

ce

Figure 3.1.: Logical partitioning of the heap and the approximation of the needed set by
the short-term memory model

advance the heap will grow without bounds like using bump pointer allocation without

deallocation in the persistent memory model. [1]

Controlling the expiration dates of the objects and the advance of time can be done

in different ways. The marking phase of a tracing collector can be used to refresh all

reachable objects and the sweeping phase advances time. Another approach is to let

the programmer explicitly provide refreshing information and explicitly advance time in

the program. Unlike explicit memory management using the persistent memory model

the programmer does not need to know exactly where the last use of an object is, but

instead she gives an upper bound on the lifetime of an object. [1]

To use an analogy, short-term memory works like a library, where one can pick up books

and bring them back after a while. Short-term memory provides a function to acquire an

object, another function updates the expiration date. Above all, we have to introduce a

notion of time to realize this concept.

In the remainder of this chapter we focus on a short-term memory model based on

explicit refreshing. We describe how single and multiple mutator threads deal with

short-term memory objects and we discuss the implications of shared objects and how

to handle multiple expiration dates.

27

3. Short-term Memory Model

3.1. Single-threaded Model

Short-time memory is designed to be used together with the persistent memory model.

Programmers use the malloc call to allocate dynamic memory. An implementation of

short-term memory intercepts malloc and adds the extra space for the expiration exten-

sion to the chunk of memory demanded by the program. This enables full backwards-

compatibility with existing mutators.

At any time after the allocation of an object it can be transformed to a short-term

memory object by calling a refresh(o, e) routine where o is a pointer to the object and

e is the so-called expiration extension, e ≥ 0. The refresh call adds a new expiration

date (l+ e) to the object, where l is the current value of a clock controlled by the calling

thread. The clock is an integer counter and its value is held in a variable local to the

thread. From this moment on, the object is managed by the short-term memory system.

The object is guaranteed to exist until the clock of the thread is increased to (l+ e+ 1).

After this, the object is said to be expired and will eventually be reclaimed by the short-

term memory management. The clock advances according to an explicit call of a tick

function in the program which increases the clock from l to l + 1. Consequently, the

object expires after (e + 1) tick calls unless another refresh(o, e′) call is performed on

the object. [1]

Figure 3.2 illustrates the life-cycle of persistent and short-term memory objects on the

heap. In the first step, objects a, b and c are allocated using malloc. Then, after some

time, objects b and c are refreshed with an expiration extension of 1 and 0, respectively.

Now, objects b and c are short-term memory objects while object a is still persistent.

The clock of the mutator thread is 0 at this moment. The state of the clock is shown

on the time axis. Object b receives an expiration date of (0+1)=1 and object c gets

an expiration data of (0+0)=0. A tick call increases the clock to 1 and causes object c

to expire. A second tick call increases the state of the clock to 2 which expires object

b. Note that object c no longer exists in the rightmost picture because the memory

management system can remove an expired object at any time.

A thread can also perform multiple refresh calls on the same object in between of two

tick calls. Every refresh call creates a new expiration date for the object. However, the

expiration extensions do not accumulate but the largest expiration extension determines

the effective expiration date of this object. The only side-effect is wasting CPU power

28

3.2. Multi-threaded Model

Heapa

b

c

P

P

P

a

b

c

P

1

0

a

b

c

P

1

X

a

b
P

X

Time

b=
m

al
lo

c(
si

ze
)

c=
m

al
lo

c(
si

ze
)

a=
m

al
lo

c(
si

ze
)

0

re
fr

es
h(

c,
0)

re
fr

es
h(

b,
1)

ti
ck

()

2

ti
ck

()

1

Heap Heap Heap

Figure 3.2.: Persistent and short-term objects of a single mutator thread

and memory for creating and storing the expiration dates that have no effect. [1]

3.2. Multi-threaded Model

In multi-threaded applications, it is possible that an object is shared by different threads

and therefore it can be refreshed by more than one thread. An object can thereby

have multiple expiration dates from multiple threads that are evaluated with respect

to the different clocks of the threads. The expiration semantics of the single-threaded

model therefore needs to be extended, however it remains still simple. According to our

definition, an object in short-term memory expires, when all its expiration dates have

expired. An expiration date has expired, if its value is less than the value of the clock

of the thread that created the expiration date through refreshing. [1]

Refreshing an object by multiple threads has two consequences. First of all, the object is

shared between the refreshing threads, i.e., every thread that wants to refresh an object

needs a reference to it. Second, the refreshing of the object needs to be synchronized.

Otherwise it is possible that a thread refreshes an object that has already expired. In

other words, every thread needs enough time to refresh an object. This can be done

29

3. Short-term Memory Model

Heapa

b

c

P

P

P

a

b

c

2

0

0

a

b

c

2

0

a

b
3

X

Global Time

b=
m

al
lo

c(
si

ze
)

c=
m

al
lo

c(
si

ze
)

a=
m

al
lo

c(
si

ze
)

0

gl
ob

al
_r

ef
re

sh
(b

,0
)

1

gl
ob

al
_t

ic
k(

)

Heap Heap Heap

Thread 1

Thread 2

gl
ob

al
_r

ef
re

sh
(c

,0
)

gl
ob

al
_t

ic
k(

)

gl
ob

al
_r

ef
re

sh
(a

,2
)

1

gl
ob

al
_r

ef
re

sh
(a

,2
)

c

Global Phase

Global Phase

1

1

0

0
gl

ob
al

_r
ef

re
sh

(c
,1

)

1

gl
ob

al
_t

ic
k(

)

1

Figure 3.3.: Refreshing and expiration of short-term objects shared by two threads

either explicit by the application through synchronization mechanisms or implicit by

the short-term memory management system. For short-term memory we bring up the

notion of a global time to enable the expiration of shared objects. In this section we

describe a mechanism for global-time management. [1]

3.2.1. Global-Time Management

In the single-threaded model of short-term memory, each thread stores its own expiration

dates and evaluates them with respect to its own notion of time. Shared objects require

30

3.2. Multi-threaded Model

expiration dates to be created and evaluated with respect to a thread-global notion of

time. We therefore introduce global refresh to create expiration dates for shared objects

and a global tick routine that expires such objects according to a synchronized notion of

global time. Like the refresh call for local objects, global refresh(o, e) takes a reference

to an object o and an expiration extension e as an argument. The expiration date for a

shared object o is (g + e), where g is the global time. The object is guaranteed to exist

until the global time is advanced to (g + e + 1). [1]

Global time is an integer counter visible to all threads. An expiration date created

through global refresh has expired if its value is less than global time. Global time

advances in a synchronized fashion after all participating threads issued a global tick

call at least once. Intuitively, every thread needs enough time to create an expiration

date for a shared object it wants to use in the future. For this, we define a thread-local

variable called global phase which determines if the thread performed a global tick since

the last global-time advance. We also define a ticked threads counter which gives the

number of threads that have ticked at least once since the last global time advance. The

last thread, that has called global tick, triggers the advance of global time and resets

the ticked threads counter. This event also marks the end of the current global phase

and the start of the next one. [1]

Figure 3.3 illustrates a heap of three objects that are shared among two threads. The

global time counter starts at zero as well as the global phase counters in each thread.

Thread 2 allocates object a and thread 1 allocates objects b and c. We assume that

these three pointers are stored at a place that is accessible to both threads, e.g., global

variables. After some time thread 2 sets an expiration extension of 2 on object a by

calling global refresh(a, 2). The expiration date is created with respect to the global

time, i.e., (g + e) = (0 + 2) = 2. Thread 1 sets the expiration extension of 0 to objects

b and c. Their expiration date results in (g + e) = (0 + 0) = 0. Thread 1 is the first

thread to perform a global tick. This increases the global phase of thread 1. Note, that

the global time is not affected, since thread 2 has not ticked yet. A subsequent call to

global tick by thread 1 has no effect on the global time either.

As we stated above, global time is advanced only after all threads had a chance to

create their own expiration dates for shared objects. Thread 2 uses this chance to set

an expiration extension of 1 on object c. Since the global time is still 0, this results in

an expiration date of (g + e) = (0 + 1) = 1 for object c. After thread 2 is done with

31

3. Short-term Memory Model

setting expiration extensions for all objects it is interested in, it calls global tick. Note

that thread 2 does not refresh object b, which means it does not want to use it. Thread

2 is the last thread that had to tick in global phase 0. Now, all participating threads

did a global tick and the global time is increased to 1. From this moment on object b is

expired because its expiration date (e = 0) is less than the global time g = 1.

Based on this global time scheme the programmer does not need to provide any synchro-

nization commands to ensure that objects do not expire too early. For example, if the

programmer would use the local refresh and tick calls instead, thread 2 would refresh

an expired object c. This is considered a programming error. Global-time management

solves this problem for the programmer at the expense of higher memory consump-

tion. In the example in Figure 3.3 object b is not used after thread 1 called global tick.

However, it remains on the heap until thread 2 also called global tick.

3.3. Sources of Errors

Providing explicit expiration information runs the risk of being incomplete or even wrong.

The same problem applies to explicit malloc and free in the persistent memory model.

Missing free calls in the persistent memory model lead to memory leaks, i.e., unused

objects not being freed. In short-term memory the memory usage can grow out of

bounds, if time does not advance, i.e., tick calls are missing. On the other hand, missing

refresh calls have the same effect as premature free calls in the persistent memory model

and both result in dangling pointers. We believe that it is easier to reason about which

objects are sill needed in the future than reasoning about which objects are not needed

anymore. Furthermore, redundant refresh calls in short term memory have no effect

(other than wasting CPU time and memory), while redundant free calls in the persistent

memory model cause a runtime error. [1]

3.4. Summary

We have introduced the short-term memory model where the lifetime of an object is

controlled by setting its expiration date which is evaluated with respect to a thread

local clock if the object is local and with respect to a global clock if the object is shared.

32

3.4. Summary

When the expiration date is less than the value of the responsible clock, we say the

object has expired and an implementation of short-term memory may reclaim it.

We have also presented a global-time management scheme that guarantees that multiple

threads have the chance to refresh shared objects. The programmer does not need

to synchronize the short-term memory management calls at the expense of additional

memory consumption. However, if space efficiency is an issue, the programmer is free

to take care of the synchronization by herself.

33

4. Self-collecting Mutators in C

In this chapter we present an efficient and concurrent implementation of short-term

memory called self-collecting mutators (SCM) [1]. In self-collecting mutators the pro-

grammer provides explicit refresh and tick information. This information is passed to the

short-term memory system through function calls that we define in the application pro-

gramming interface (API). We call our implementation LIBSCM since it is implemented

as dynamically loadable shared library for the C programming language [9].

In this chapter we describe the most important design decisions for the library and

the technical details to achieve them. We define the API that is visible to the user

and describe its functionality. The design of the data structures used in LIBSCM is of

particular interest because they enable an efficient implementation of the self-collecting

mutators algorithm. Finally, we expose some extra features of LIBSCM that can be

used to debug or profile applications that use short-term memory.

4.1. Design Decisions

The primary goals in the development of LIBSCM was to achieve minimal and pre-

dictable overhead for all API calls. In this section, we describe the implementation

details that enable for constant time and space overhead per operation even for multi-

threaded use cases.

The main trade-off in short-term memory is to simplify the concurrent reasoning about

the needed set of objects at the expense of memory consumption. Nevertheless, an

important design constraint was space efficiency of the data structures that we use to

maintain management information. We explain the most important data structures and

the optimizations we performed on them. Furthermore we do not want to maintain extra

threads for memory management. All actions are performed by mutators.

4.1. Design Decisions

4.1.1. Backwards Compatibility

Another important goal to achieve with LIBSCM is backward compatibility, i.e., ex-

isting C programs using the persistent memory model run on top of LIBSCM without

modifications. The reason is to allow iterative migration of an existing application to

short-term memory. LIBSCM provides a thin layer between an application and the

standard C library. A call to malloc or free is redirected through wrapper functions in

LIBSCM. The malloc call is slightly changed to add one additional word of meta data

to every object. This extra word has a meaning only if the object is later changed to

short-term memory. We discuss this meaning in the next section. In the persistent

case, this word has no functionality. The free call is also wrapped in LIBSCM. Here we

check if an object is still in persistent mode and if so the deallocation function of the C

standard library is called. The wrapping layer only imposes a very small and constant

time overhead to the standard library calls. We use the GNU linker ld [22] and more

specifically the --wrap option of ld to redirect calls to malloc and free from the standard

library to the corresponding functions of LIBSCM.

4.1.2. Representation of Expiration Dates

The short-term memory model allows multiple expiration dates per object. At allocation

time the number of expiration dates that this object will receive is unknown. Therefore,

writing the expiration dates in an object header would require the header to grow.

Increasing the size of a chunk of memory usually requires copying of its contents. This

violates the constant runtime overhead requirement we have stated above.

The way we handle this problem is to inverse the information flow. Instead of giving the

object the information about its expiration dates, we give every possible expiration date

the information about which objects share this very expiration date. Figure 4.1 shows

the difference of this two approaches. In (a), the different expiration dates are stored

in header fields for each object. Note that, for example, adding a fourth expiration

date to object A would require resizing of the whole object. In (b), we maintain a data

structure for every possible expiration date (1 to 6). The example uses a list of pointers

to the objects that have the corresponding expiration date. The list with the label 3

keeps pointers to the objects A and B. These are the objects that have the expiration

date 3. The pointers in the lists that represent the expiration dates we call descriptors.

35

4. Self-collecting Mutators in C

The header of each object now only consists of a descriptor count, i.e., the number of

descriptors that point to this object. Note that the object has no information about its

expiration dates.

In the example in Figure 4.1 we start at time 1. When the time advances to 2, all

the descriptors in the list labeled with 1 are expired. When a descriptor expires, we

simply delete it and decrement the descriptor count in the object the descriptor points

to. As stated above, the object does not know which expiration dates are assigned to it.

All it knows is that as long as the descriptor count is larger than zero, there still exist

expiration dates that have not expired yet. When the descriptor count finally drops

to zero, we know that all expiration dates represented by descriptors have expired and

thereby the whole object has expired. In this way, we can keep a fixed size object header

and maintain the expiration dates in data structures that have constant time access and

can be optimized to efficiently store the descriptors. The implementation of this data

structure is presented in section 4.3.3.

4.1.3. Threads

One of the main ideas on self-collecting mutators is that the threads that use short-term

memory are responsible to perform the memory management through the LIBSCM API

calls. Every action performed inside LIBSCM happens between the invocation and the

return of an API function call.

The advantage of such an approach is reduced complexity. Garbage collectors usually run

separate threads for tracing or cycle detection which requires synchronization between

the workers and memory management threads. Another advantage in a time-sharing

environment is that no context switches between the memory management routines and

the actual work are necessary. This increases the predictability of the latency of memory

management operations.

4.1.4. Allocator

Our implementation of a short-term memory system is closely coupled with a dynamic

memory allocator. However, the main purpose of LIBSCM is not the allocation of

objects but the management of expiration dates. Self-collecting mutators makes use

36

4.1. Design Decisions

expiration date: 3

expiration date: 1

expiration date: 5

object payload

object A

expiration date: 3

expiration date: 5

object payload

object B

expiration date: 5

object payload

object C

object payload

object A

object payload

object B

object payload

object C

descriptor count: 3 descriptor count: 2 descriptor count: 1

1 2 3 4 5 6

(a)

(b)

Figure 4.1.: Expiration dates stored in the object header (a) and using descriptors to
represent multiple expiration dates of an object (b)

37

4. Self-collecting Mutators in C

of the malloc and free call from the standard C library instead of implementing this

functionality. We decided to use the GNU C library and build LIBSCM on top of the

existing GLIBC allocator ptmalloc2 [7]. Still, it would be possible to change the default

allocator to any other library that supports malloc and free in its API. An exploration on

which existing allocator would best support the allocation pattern of typical short-term

memory applications remains future work.

4.2. Operations of Self-collecting Mutators

An application can use short-term memory by calling the functions of LIBSCM that

are defined in its public Application Programming Interface (API). The API of our

implementation is defined closely to the abstraction that short-term memory suggests

in Chapter 3. It defines calls for allocation, setting expiration extensions and time

progression. In this section we describe the API of the implementation and give an

overview of the semantics of the function calls.

In general, the design of the API also inteds to be used as easy and flexible as possible.

The LIBSCM implementation can be compiled as a Dynamic Shared Object (DSO)

and because of its backwards-compatibility it can be linked to existing code without re-

compilation of this code (which might not be available). The implementation is based

on a DSO best-practice guide described in [23].

4.2.1. Allocation

The LIBSCM allocation routine is called scm_malloc. The definition snipplet from the

public header file stm.h is given in Listing 4.1. From the point of view of the programmer,

the semantics of scm_malloc is very similar to malloc from the C standard library

(defined in stdlib.h). The caller provides the size in bytes as unsigned integer and returns

a pointer to the beginning of the usable address space. The content of this address

space is undefined. The size_t type is the architecture independent representation of

memory-related quantities between 0 and SIZE_MAX which is defined in stdint.h.

This function basically is all a programmer needs to allocate chunks of dynamic mem-

ory. However, the dynamic memory API from the C standard also defines the calloc,

38

4.2. Operations of Self-collecting Mutators

realloc, and free call. They are described in the malloc man page [12]. Again, for

backwards-compatibility we also implement wrappers for calloc and realloc. How-

ever, they are not part of the public API and only act as wrappers for scm_malloc. On

the other hand, scm_free is part of the LIBSCM API. It is used to deallocate perma-

nent objects, i.e., objects that never received an expiration date. Passing short-term

memory objects to scm_free is a programming error. The only argument of scm_free

is the pointer to the permanent object (obtained by scm_malloc). Listing 4.2 gives the

definition of scm_free.

1 /∗
2 ∗ scm malloc i s used to a l l o c a t e shor t term memory o b j e c t s .

3 ∗ This func t i on can be used at compi le time . Unmodified code

4 ∗ which uses e . g . g l i b c ’ s mal loc can be used wi th l i n k e r

5 ∗ opt ion −−wrap mal loc

6 ∗/
7 void ∗ scm malloc (s ize t s i z e) ;

Listing 4.1: Definition of scm malloc from stm.h

1 /∗
2 ∗ scm free i s used to f r e e shor t term memory o b j e c t s wi th no

3 ∗ d e s c r i p t o r s on them e . g . permanent o b j e c t s . This f unc t i on can

4 ∗ be used at compi le time . Unmodified code which uses e . g . g l i b c ’ s

5 ∗ f r e e can be used wi th l i n k e r op t ion −−wrap f r e e

6 ∗/
7 void s cm f r ee (void ∗ptr) ;

Listing 4.2: Definition of scm free from stm.h

4.2.2. Time Progress

The short-term memory model defines two kinds of clocks. Each thread that uses short-

term memory objects needs to maintain a local notion of time to expire thread-local

objects and a global notion of time to expire shared objects. In LIBSCM these clocks

are implemented as integer variables (see Section 4.3.2) and the progress of one unit of

time is mapped to incrementing this integer variables. The speed of time progression is

controlled by the program through tick calls.

39

4. Self-collecting Mutators in C

We distinguish two different tick calls depending on the clock we want to advance. The

thread-local clock is controlled by the scm_tick call defined in stm.h. Listing 4.3 gives

the prototype of this function which does not need any parameters.

1 /∗
2 ∗ s cm t i ck i s used to advance the l o c a l time o f the c a l l i n g thread

3 ∗/
4 void scm t i ck (void) ;

Listing 4.3: Definition of scm tick from stm.h

The semantics of scm_tick is very simple. It increases the thread-local time by one and,

by this, expires all objects that have an expiration date which is smaller than the new

local time.

Controlling the global time is a little bit trickier since it needs to reason about the state

of all threads that participate in the short-term memory system. The API call however

is still simple. The prototype of the function scm_global_tick is given in Listing 4.4.

1 /∗
2 ∗ s cm g l o b a l t i c k s i g n a l s t h a t the c a l l i n g thread i s ready to have

3 ∗ the g l o b a l time increased

4 ∗/
5 void s c m g l o b a l t i c k (void) ;

Listing 4.4: Definition of scm global tick from stm.h

The semantics differs from the thread-local variant of time advance. Calling

scm_global_tick does not directly increase the global time but raises a flag that the

calling thread is willing to increase the global time. Only after all participating threads

called scm_global_tick at least once the global time is actually advanced. As a conse-

quence, two subsequent calls of scm_global_tick of a single thread executing without

interference by other threads have the same effect as one single call. The last thread

that calls scm_global_tick actually increments the global time.

The time interval between two global time increments we call a global phase. A thread

calling scm_global_tick compares the global time with its thread-local global phase

variable. If these two values differ it means that the thread called scm_global_tick

for the first time in the current global phase. The thread then stores the global time in

40

4.2. Operations of Self-collecting Mutators

its global phase variable and logically raises a flag. The flagging is implemented by decre-

menting a so-called ticked threads countdown. The last thread that calls

scm_global_tick in the current global phase decrements the countdown to zero and

triggers the global time advance. The countdown is reset to the number of participat-

ing threads and a new global phase begins. This expires all shared short-term memory

objects that have an expiration date which is smaller than the new global time.

Global Time Advance for Blocking Threads

At some point in time a thread may block because of IO operations or synchronization

requirements. The progress of the global time in self-collecting mutators depends on all

threads. This means that a single blocking thread would stop any progress of global

time.

We deal with this problem by changing the semantics of scm_global_tick. The com-

putation of global time is restricted to not-blocking (or active) threads and the

ticked threads countdown represents the number of active threads. For each thread we

maintain a new clock called thread-global clock. This clock advances at the speed of

the global time when a thread is active and stops when the thread is blocking. When

a thread calls scm_global_tick for the first time in a global phase we increment the

thread-global time. Note that the global time advances when the last thread globally

ticks in this global phase. Therefore the global time and the thread-global time may be

different but still advance with the same speed. [24]

When a thread blocks the number of active threads is decremented and the global

time advances without involving the blocking thread. The thread-global time remains

unchanged as long as the thread is blocked. When a thread has not yet globally ticked in

the global phase it starts blocking we have to decrement the ticked threads countdown

such that the other threads can proceed with their global time management. Therefore,

when the thread resumes, it assumes that it already has globally ticked in the current

global phase. This simplifies the management of the ticked threads countdown because

it is not possible for the blocking thread to decrement this countdown twice in one global

phase. Only the number of active threads needs to be incremented. The only exception

is when a resuming thread is the only active thread in the system. Then it has to globally

tick to make global time progress. [24]

41

4. Self-collecting Mutators in C

Using the thread-global time instead of the global time to expire shared objects has

one important consequence. Since the global time and the thread-global time advance

with the same speed but may be out of sync, we need to take two thread-global time

advances to guarantee that it contains one global time advance. Furthermore we need

to add another time unit to the expiration extension of scm_global_refresh such that

all threads have the chance to refresh a shared object withing one global phase. [24]

Runtime Complexity

The expiration dates of an object are represented by descriptors. As described in Figure

4.1, for every expiration date we maintain a set of descriptors. When time advances by

one step this means that one such set of descriptors expires at the same time. For each

descriptor, we have to decrement the descriptor count of the object it points to and if

the descriptor count drops to zero, we have to free the object. It is easy to see that

in this way the advance of time is not a constant time operation but linear to the size

of the set of descriptors with the expired expiration date. The advantage, on the other

hand, is that expired objects are reclaimed immediately after the time has advanced.

We call this behavior of self-collecting mutators the eager collection strategy because

expired objects are reclaimed as soon as possible.

To achieve a constant runtime behavior, the expiration process of the descriptors can

be changed for incrementality. In this case, the set of descriptors that represents a

just expired expiration date is moved to a set of descriptors that are already expired.

This concatenation of lists can be done in constant time. Later, when the program

calls a refresh or tick operation again, in addition to creating a new descriptor we also

process one expired descriptor (or some other constant number of expired descriptors).

This process we call lazy collection strategy because expired descriptors and objects are

physically reclaimed some time after they have logically expired. This strategy enables

a constant runtime bound for the tick operations at the expense of a higher memory

consumption due to deferred reclamation. The refresh operations remains constant time

since it only processes a constant number of descriptors.

42

4.2. Operations of Self-collecting Mutators

4.2.3. Expiration Extensions

The LIBSCM API defines two different calls to set an expiration extension on an object.

They are called scm_refresh and scm_global_refresh. The definitions from stm.h are

shown in Listing 4.5. Both functions add the given expiration extension to the given

object. The difference is that the resulting expiration date of the object will be expired

based on the thread-local clock in case scm_refresh is called or based on the thread-

global clock if scm_global_refresh is used. As a consequence, scm_refresh can be

used to extend the expiration date of thread local objects and scm_global_refresh

extends the expiration date of objects that are shared among other threads. The global

time management described in Section 4.2.2 guarantees that other threads get the chance

to globally refresh a shared object.

1 /∗
2 ∗ s cm g l o b a l r e f r e s h adds ex t ens ion time un i t s to the e x p i r a t i on

3 ∗ date o f p t r and take s care t ha t a l l o ther th reads have enough

4 ∗ t ime to a l s o c a l l g l o b a l r e f r e s h (ptr , e x t ens i on)

5 ∗/
6 void s c m g l o b a l r e f r e s h (void ∗ptr , unsigned int extens i on) ;

7

8 /∗
9 ∗ scm re f re sh i s the same as s cm g l o b a l r e f r e s h but adds the

10 ∗ e x p i r a t i on ex t ens ion i s e va l ua t ed us ing the thread l o c a l c l o c k

11 ∗/
12 void s cm re f r e sh (void ∗ptr , unsigned int extens i on) ;

Listing 4.5: Definition of scm refresh and scm global refresh from stm.h

The scm_refresh call with expiration extension e reads the current thread-local time

l and adds a new expiration date (l + e) to the object it is called on. This expira-

tion date will be expired with respect to the thread-local clock. For shared objects,

scm_global_refresh with expiration extension e takes the thread-global time g and

adds (g + e + 2) as a new expiration date for the corresponding object. The two extra

time units are needed to support blocking threads and shared objects (see Section 4.2.2).

This expiration date will be evaluated using the thread-global clock.

An object can have multiple expiration dates and each of them can be either locally and

globally evaluated. The object is expired only if all expiration dates have expired.

43

4. Self-collecting Mutators in C

Runtime complexity

When the program performs a refresh operation a new descriptor is created and stored

in the corresponding data structure (see Figure 4.1). In addition to that, the descriptor

count of the object is incremented. Both steps only require constant time and so the

whole refresh operation runs in constant time. This holds for both the scm_refresh

and scm_global_refresh calls.

4.3. Data Structures

This section gives an overview of the design of the data structures we used to implement

self-collecting mutators in C. Some structures are direct consequences of the short-term

memory model and some are designed to improve efficiency and performance rather

than representing logic. In the following we start with a top-level view of the most

important data structures and then focus on implementation details and how they effect

the behavior of the system. Unless stated otherwise, the definitions of the data structures

used in LIBSCM can be found in the header file scm-desc.h.

4.3.1. Descriptor Root

The descriptor root is the heart of the thread-local meta data. Figure 4.2 illustrates the

high level contents of this data structure. In this section we start with the top view of

this central data structure and then refine its contents step by step. The global phase

field is an integer counter that determines if the thread that owns this descriptor root

already did a global tick in the current global-time period. This directly reflects the

short-term memory model for shared objects presented in Section 3.2.

The descriptor root contains three different buffers to store descriptors. The list of expi-

red descriptors stores descriptors of objects that have expired at some time in the past.

These objects will eventually be reclaimed. The locally clocked descriptor buffer and

the globally clocked descriptor buffer store descriptors that represent objects with an

expiration date in the future that will be evaluated with respect to the thread-local

or the thread-global clock, respectively. The descriptor page pool structure and the

44

4.3. Data Structures

global_phase

list_of_expired_descriptors

bb

locally_clocked_descriptor_buffer

globally_clocked_descriptor_buffer

descriptor_page_pool

next_descriptor_root

descriptor handling

reuse of meta-data

Figure 4.2.: Layout of the descriptor root, the main thread-local data structure

next descriptor root field are designed to reuse meta-data in the LIBSCM implementa-

tion.

4.3.2. Descriptor Buffer

Figure 4.3 shows the structure of the descriptor buffer where not-expired descriptors

are stored. It consists of an array of descriptor page lists. Each element of this array

represents descriptors with the same expiration date. The length of the array is stored in

the field not expired length and corresponds to the maximal expiration extension that

can be handled by the refresh calls. The not expired descriptors array is organized as

a circular buffer and current index is the index of the descriptor page list that contains

the descriptors that will expire after the next tick call. Consequently, an expiration

date is not stored explicitly but implicitly through an offset to the thread-local time and

current index directly reflects the current thread-local time.

There are two operations that change the state of a descriptor buffer. The first oper-

ation on a descriptor buffer is to insert a new descriptor through a refresh operation

with expiration extension e. The index of the descriptor page list that represents the

45

4. Self-collecting Mutators in C

not_expired_descriptors

descriptor_page

descriptor_page_list

not_expired_length

current_index

Figure 4.3.: Layout of the descriptor buffer data structure

extension e is given through (current index + e)%not expired length.

The second operation is to increment the current index and expire descriptors. This

implements the logic of time advance.

Current index = (current index + 1)%not expired length increments the index with

respect to the circular buffer. Now, current index− 1 points to the descriptor page list

that contains expired descriptors. This list is moved to list of expired descriptors in the

descriptor root.

Support for Global-time Management

The descriptor root contains two descriptor buffers. One locally clocked buffer and

one globally clocked buffer. The locally clocked descriptor buffer contains not-expired

descriptors that will be expired based on the thread-local clock and the globally clocked

descriptor buffer stores not-expired descriptors that are evaluated based on the thread-

global clock. When a descriptor is created through either a local or global refresh call it

is stored in the locally or globally clocked descriptor buffer, respectively.

The expiration extension used in a refresh call can be between zero and a configured max-

imum expiration extension (max exp ext). Consequently, the not expired descriptors

array in the descriptor buffer needs to be of size max exp ext + 1. For shared objects

we need to set a larger expiration extension for the reasons we have already mentioned

in Section 4.2.2. Firstly, when a threads calls a global tick operation for the first time

in a global phase it has to increment the thread-global time which is implemented by

46

4.3. Data Structures

the current index of the globally clocked buffer. Then it expires the descriptors stored

in current index − 1. However, it is possible for other threads that have not ticked in

this global phase yet to globally refresh a shared object that would have expired for this

thread. So, we must make sure that shared objects do not expire too early. Therefore

we add one additional expiration extension to each global refresh call. Secondly, it is

possible that threads block for some time due to IO operations or some synchroniza-

tion requirements. A blocking thread cannot perform any short-term memory opera-

tions including global_tick. This means that the global time cannot advance when a

thread is blocking. Therefore we need to keep a shared object for another thread-global

time advance to guarantee that one global phase has completed. When a thread calls

global_refresh on an object with expiration extension e we create a descriptor that

represents an expiration extension of e+2. As a consequence the not expired descriptors

array in the globally clocked buffer is two elements larger than in the locally clocked

buffer. This way, all operations of the descriptor buffer data structure remain the same.

4.3.3. Descriptor Page

The descriptor page is the data structure that actually contains the descriptors. It de-

fines the descriptors array where descriptors are allocated in a stack-like fashion, i.e.,

starting at element 0 up to the maximum capacity of the descriptors array which is

a compile time constant. The integer field number of descriptors is the index in the

descriptors array where the next descriptor will be stored. The layout of the descrip-

tor page is shown in Figure 4.4.

In case the descriptors array runs out of capacity, descriptor pages can be extended by

building a list of descriptor pages (see Section 4.3.4). The next descriptor page pointer

is used for this purpose.

Descriptor Pages vs Descriptor List

An alternative approach to implement a collection of descriptors is a singly linked list

of descriptors. The design decision to use descriptor pages instead is based on a time-

space trade-off. We assume that the spacial locality of descriptor pages yields caching

advantages when a page of descriptors expires because expired descriptors are likely to

47

4. Self-collecting Mutators in C

next_descriptor_page

descriptors

number_of_descriptors

Figure 4.4.: Layout of the descriptor page data structure

first_descriptor_page

last_descriptor_page

b b

Figure 4.5.: Layout of the descriptor page list data structure

be processed one after another (especially in case of eager collection). In addition to

that, the descriptors do not require a next pointer to build a linked list of descriptors.

On the other hand a descriptor page might not be full, thus wasting space through

internal fragmentation. However, we believe that the impact is relatively small and we

conduct a performance evaluation on this factor in Chapter 6 that supports this claim.

4.3.4. Descriptor Page List

The descriptor page list data structure shown in Figure 4.5 consists of a first and a last

pointer to represent the beginning and the end of a singly linked list of descriptor pages.

The first and last pointer enable for constant-time insertion and removal at either the

head or the end of the list. A list of descriptor pages is used in the descriptor buffer (see

Section 4.3.2 for details) and stores descriptors that represent the same expiration date.

Note however, that here descriptors are only inserted, never removed.

48

4.3. Data Structures

first_descriptor_page

last_descriptor_page

b b

begin

Figure 4.6.: Layout of the expired descriptor page list data structure

4.3.5. Expired Descriptor Page List

The expired descriptor page list is basically the same as the descriptor page list. The

difference is that it only stores expired descriptors. It is used in the descriptor root

data structure as a common collection for descriptors that have expired from either

the locally clocked descriptor buffer or the globally clocked descriptor buffer. When a

descriptor expires it does not matter anymore which clock expired it.

So, unlike the descriptor page lists used in the descriptor buffers where descriptors are

only added, here descriptors are only removed. Since we want to remove descriptors

in the same order as they were added, we need to empty the descriptor pages from

the beginning. The descriptor page has an index to the end of the descriptors that it

contains (see Section 4.3.3). To not inverse the order when removing descriptors from

a descriptor page we need an index to the beginning of the page that is incremented

whenever we remove a descriptor from it. Since we only remove descriptors from the

first page in the expired descriptor page list there is no point is storing such an index

in every page. Instead we maintain the begin field in the expired descriptor page list

itself. It gives the position of the next-to-remove descriptor in the first descriptor page.

4.3.6. Dynamically Allocated Management Data

The number of refresh and tick operations that a process will call are unknown when

the application is started. Therefore it is necessary that most of the data structures

that we have presented so far are dynamically allocated. The main portion of this data

structures is used to manage the descriptors.

We aim to reuse dynamically allocated data structures instead of freeing and re-allocating

49

4. Self-collecting Mutators in C

them on demand. This relaxes the utilization of the allocator. We have two main data

structures that we reuse. The first one is the descriptor page structure. This pages

are used frequently when descriptors are created or expired. When a descriptor page

becomes empty we add it to the descriptor page pool in the descriptor root (see Section

4.3.1) The size of this pool is bound by a compile time parameter to prevent unlimited

growth. When an empty page is needed it is taken from the pool. In case the pool is

empty we allocate a new descriptor page from dynamic memory.

The second cached data structure in LIBSCM is the descriptor root itself. When a

thread terminates its descriptor root is preserved in a lock-protected global list of de-

scriptor roots. When a new thread is created it reuses one of this descriptor roots

without resetting it. This way all descriptors that are still stored in the reused de-

scriptor root expire eventually when the new threads starts using tick and refresh. This

prevents memory leaks because of threads that did not expire objects before termination.

4.4. Blocking Threads

Blocking threads are problematic because they prevent the system from making global

time progress. We solved this issue by introducing a thread-global clock that is used to

expire shared objects. We have discussed this in Section 4.2.2. When a thread is about

to block or resume it needs to inform LIBSCM about that. We add two API calls to the

public interface of LIBSCM called scm_block_thread and scm_resume_thread. Listing

4.6 gives the definition of this functions from stm.h.

1 /∗
2 ∗ s cm b lock th read may be used to s i g n a l the shor t term memory

3 ∗ system tha t the c a l l i n g thread i s about to l e a v e the system

4 ∗ f o r a wh i l e e . g . because o f a b l o c k i n g c a l l . During t h i s per iod

5 ∗ the system does not wai t f o r scm t i ck c a l l s o f t h i s thread .

6 ∗ After the thread f i n i s h e d the b l o c k i n g s t a t e i t re−j o i n s the

7 ∗ shor t term memory system us ing the scm resume thread c a l l

8 ∗/
9 void scm block thread (void) ;

10 void scm resume thread (void) ;

Listing 4.6: Definition of scm block thread and scm resume thread from stm.h

50

4.5. Debug Extensions

The registration of a new thread is done automatically when it calls either refresh of

tick for the first time. Upon termination a thread may call scm_unregister_thread to

signal the system that it may reuse its descriptor root. This way the not-expired objects

kept by this thread will expire eventually. Listing 4.7 defines the interface.

1 /∗
2 ∗ s cm unreg i s t e r t h r ead may be c a l l e d j u s t b e f o r e a thread

3 ∗ t e rminates . The thread ’ s data s t r u c t u r e s are preserved f o r

4 ∗ a new thread to j o i n the shor t term memory system .

5 ∗/
6 void s cm unreg i s t e r th r ead (void) ;

Listing 4.7: Definition of scm unregister thread from stm.h

4.5. Debug Extensions

When LIBSCM is compiled to use the lazy collection strategy it is unknown when an

expired object is actually freed. This can happen at any time after the tick call that

expired the object and it can be done by an other thread if the object was shared.

When the programmer wants to perform a certain action when the object is freed, e.g.,

for heap profiling or to implement some application specific logic she can provide a

finalizer function that is executed when a certain object is deallocated.

LIBSCM allows a total of 32 different finalizer functions. The programmer uses the API

calls scm_register_finalizer to pass a function pointer of type int(*)(void*) to the

short-term memory system. The return value is a finalizer index between 0 and 31. The

programmer can bind a registered function to an arbitrary short-term memory object

using this finalizer index and a pointer to the object through the scm_set_finalizer

call. The finalizer index is stored in the object header of the short-term memory object.

When the expired object is freed the finalizer function with the index bound to this object

will be executed. A pointer to the short-term memory object is passed as parameter

to the finalizer function. The programmer can perform any action in the finalizer code.

It is possible to keep an expired object alive by returning a non-zero integer from the

finalizer. In this case LIBSCM will not free the object. The programmer must take care

of reusing the object by either freeing it using scm_free or by setting a new expiration

extension using a refresh call.

51

4. Self-collecting Mutators in C

1 /∗
2 ∗ s cm r e g i s t e r f i n a l i z e r i s used to r e g i s t e r a f i n a l i z e r f unc t i on

3 ∗ in l i b scm . A func t i on id i s re turned f o r l a t e r use .

4 ∗ I t i s up to the user to des i gn the s cm f i n a l i z e r f unc t i on . I f

5 ∗ s cm f i n a l i z e r re turns non−zero , the o b j e c t w i l l not be

6 ∗ d e a l l o c a t e d . LIBSCM prov ide s the po in t e r to the o b j e c t as

7 ∗ parameter o f s cm f i n a l i z e r .

8 ∗/
9 int s c m r e g i s t e r f i n a l i z e r (int (∗ s c m f i n a l i z e r) (void ∗)) ;

10

11 /∗
12 ∗ s cm s e t f i n a l i z e r can be used to bind a f i n a l i z e r f unc t i on id

13 ∗ (re turned by s cm r e g i s t e r f i n a l i z e r) to an o b j e c t (p t r) .

14 ∗ This func t i on w i l l be executed j u s t b e f o r e an exp i r ed o b j e c t i s

15 ∗ d e a l l o c a t e d .

16 ∗/
17 void s c m s e t f i n a l i z e r (void ∗ptr , int s c m f i n a l i z e r i d) ;

Listing 4.8: Definition of scm register finalizer and scm set finalizer from stm-debug.h

4.6. Summary

In this chapter we described LIBSCM, a concurrent, incremental, and non-moving im-

plementation of a short-term memory algorithm called self-collecting mutators. Starting

from our design goals like constant space and time overhead per object and the absence

of additional memory management threads we developed the implementation details

from a high-level view down to the actual operations performed on short-term memory

objects.

LIBSCM supports explicit short-term memory functions including allocation, setting

expiration extensions and thread-independent time progression. Furthermore LIBSCM

implements the ability to manage shared objects including automatic lifetime reasoning

for independently ticking threads which guarantees that shared objects expire only if

they expired for all threads.

52

5. ACDC Benchmark

Our goal is to evaluate the performance of all features of our implementation of short-

term memory which includes multi-threaded mutators, thread-local objects as well as

shared objects and independent control of time for all threads. For this task, we need

an application that exercises the features that LIBSCM provides. This chapter presents

the way towards such an application.

In multi-threaded applications, the correct use of the persistent memory model can be a

difficult job because the reasoning about the last use of an object is a non-trivial problem

in general. This is why large-scale applications and libraries in C often come with some

sort of domain-specific garbage collection - usually reference counting - to deal with the

problem of lifetime reasoning [15]. One prominent example for such a strategy is the

object memory management of the Gnome desktop environment [25].

The short-term memory model enables the programmer to use dynamic memory in a way

that is very different to the traditional way of dynamic memory management in C using

malloc and free. Given the fact that short-term memory is a novel and thereby unused

model and that multi-threaded applications often use some higher-level abstraction for

dynamic memory in preference to malloc and free, it turns out to be difficult to find a

multi-threaded application that can easily be ported to short-term memory and being

used as a benchmark application.

As a consequence of the non-existence of benchmarks that support short-term memory

operations and the difficulties of porting complex multi-threaded applications we decided

to create our own allocator benchmark tool that models the behavior of real-world

mutators while remaining simple enough to fully understand how it exercises the system

under test, our implementation of LIBSCM.

The amount of dynamic memory used by a typical mutator changes over time. When the

mutator starts executing, the number of dynamically allocated objects is zero and then

5. ACDC Benchmark

starts growing until a free call is issued for the first time. This free call decreases the

number of objects by one and from this time on the mutator can either allocate or free

objects as the program demands. The time between the allocation and the deallocation

is different for each object. They might be freed right after they were allocated or they

can live for nearly the whole execution time of the program. The dynamic memory

consumption of a mutator observed over time can be seen as an analogue signal that

consists of different frequency components. The short-living objects correspond to high

frequencies and the longer-living objects correspond to lower frequencies. They form

the AC components of a signal while permanent memory or very long-living objects

represent the DC component. A mixture of different object lifetimes that reflects a

real-life mutator is the goal of our benchmark program and it is therefore called ACDC

benchmark. In this chapter we describe the characteristics of mutators that we want to

model and we take a look at the most important implementation details of ACDC.

5.1. Characteristics of Dynamic Objects in C Programs

The workload that the ACDC benchmark produces is a series of memory management

API calls for either short-term memory implementations or persistent memory model

implementations. The modeled workloads are inspired by the behavior of real-word

applications to achieve meaningful results.

In [4] and [5] the behavior of a series of allocation-intensive C programs from a variety of

application areas have been analyzed to predict the lifetime of objects allocated at a given

allocation site. In [26] the authors analyze the allocation behavior of some additional

applications to show that the right allocation policies can avoid fragmentation through

the allocator. We now briefly discuss the most important observations made in this

studies regarding the characteristics of dynamically allocated objects.

For the analyzed programs, the authors identified a connection between the time objects

are allocated and the time objects are freed. They showed, that objects that are allocated

together also die together. Intuitively, one can think of some objects that are allocated

at the same time before a certain operation is performed on them and then are freed

together after the operation is finished. [26]

A second observation made by the authors was that programs tend to allocate objects

54

5.2. A Notion of Time for a Mutator

of only a few different sizes. They showed that on average 90% of all objects are of just

six to seven different sizes. The reason for this behavior is that a dynamically allocated

object is usually associated with a type, i.e., a C-style structure. As a result, only a

few structures that are used very often, e.g. a node of a list, dominate the number

of dynamically allocated objects. Usually, structures in C are very small, e.g. a node

object of a doubly linked list only requires a minimum of three words. From this we can

conclude that small objects are more likely to occur compared to large ones. [26]

We synthetically model this observations of the allocation schemes of real-world appli-

cations in our benchmark tool.

5.2. A Notion of Time for a Mutator

We are interested in a meaningful model of a mutator that covers not only the size of the

allocated objects but also the lifetime of an object. Defining the object size is straight

forward since the malloc call takes the size in bytes as an argument. The lifetime of an

object can be defined as whatever happens between allocation and deallocation of an

object. It might seem that the most natural way to do so is counting CPU cycles or

using some real-time clock to define a notion of object lifetime. However, allocations and

deallocations are the only events of interest for an allocator [5]. The service demands

placed upon an allocator are directly proportional to the rate of allocation and deallo-

cation events rather than to the elapsed time. Two time metrics based on allocation

events are directly available: the number of such allocation events and the number of

bytes allocated. Like in [5], we use the number of bytes allocated to define a notion of

logical time for each thread as follows:

For a thread Ti we have an integer counter timei that starts at zero. After the execution

of N calls to malloc(sizej), j = 1 . . . N , a threshold level li for this thread will eventually

be reached, i.e., li ≤
∑N

j=1 sizej and this event will increment timei to timei + 1.

5.3. Modeling the Workload

Based on the object size and lifetime characteristics described above, we model the mu-

tator pattern that we use in the ACDC benchmark program. Instead of giving a static

55

5. ACDC Benchmark

model like a trace of malloc and free calls, we are interested in a tool that can be con-

figured for different applications and different environmental conditions like the size of

main memory or the number of threads that will concurrently allocate and deallocate

memory. The ACDC benchmark therefore needs to support a number of runtime pa-

rameters that we will briefly describe before we proceed on how the workload is modeled

based on given configuration options.

5.3.1. ACDC Runtime Options

The ACDC benchmark program can be configured using several options that change the

behavior of the allocation pattern and therefore define the workload of an allocator. We

now briefly describe the ACDC options.

Persistent vs Short-term memory

Using this flag the ACDC benchmark program selects the memory model to use. When

persistent memory is chosen, ACDC issues a free call when the lifetime of an object has

ended. The short-term memory option causes ACDC to invoke a refresh call with an

expiration extension that corresponds to a given object. Then, this object is not touched

anymore and it will expire eventually.

Benchmark runtime

This is an integer option that defines how often each thread increments its notion of

time. When this limit is reached, the thread waits for the other threads to finish and

then terminates.

Object size bounds

ACDC accepts two integer options that define a lower and upper bound for the size of

each object that will be allocated. The values of this options are given in powers of two,

e.g. given a lower bound of 3 and an upper bound of 20 will result in a minimum object

size of 23 = 8 bytes and in a maximum size of 210 = 1 kilobyte.

56

5.3. Modeling the Workload

Time threshold

The time threshold is an integer that defines how fast time advances, i.e., the number of

bytes to allocate until the clock is incremented. The value is given in powers of 2, e.g.

a time threshold of 220 will increment a thread’s time after it allocated one megabyte of

dynamic memory.

Maximum object lifetime

Every object that is allocated in ACDC is associated with a lifetime and depending on

the memory model the object will either expire or will be freed after this time has elapsed.

This option defines the maximum lifetime that will be associated with an object. The

minimum lifetime is one, i.e., the object will only live until the time threshold is reached

for the next time.

Number of threads

This integer option determines how many threads will concurrently invoke memory man-

agement calls. The current implementation of ACDC limits this number to 58. In Section

5.4.1 we discuss this limit.

Shared objects

Using this flag one can control if ACDC uses only thread-local objects or if a portion

of the objects is shared among all threads. In the latter case one thread allocates an

object but each thread has a reference to it and assigns its own lifetime to this shared

object. It depends on the speed of time advance of each thread when a shared object is

actually freed and which thread has to free it.

57

5. ACDC Benchmark

Share ratio

This option is given as a value between 0 and 100 that specifies the percentage of the

allocated objects that are actually shared. This option only has an effect when used

together with the shared objects flag.

5.3.2. Single Mutator Behavior

After this short introduction of the ACDC runtime options we give a high-level view

of how ACDC works and how it can be reasonably configured to benchmark a given

allocator. We start with the behavior of a single mutator thread and later describe

the extensions to the algorithms to support multiple mutator threads including shared

objects.

High-level View

The ACDC benchmark tool runs a given number of threads that execute the following

main loop: A thread allocates a certain number of objects with a certain lifetime and

records the number of allocated bytes. When the configured allocation threshold (or

time threshold since we use allocated bytes as a time metric) is reached, the mutator

proceeds in time. When the configured time limit is reached, the mutator terminates.

Algorithm 1 gives the pseudo code for the main mutator loop.

Algorithm 1 Top-level view of an ACDC mutator

1: allocated bytes ← 0
2: while time ≤ benchmark runtime do
3: x ← allocate objects()
4: allocated bytes ← allocated bytes + x
5: if allocated bytes ≥ time threshold then
6: proceed in time()
7: allocated bytes ← 0
8: end if
9: end while

58

5.3. Modeling the Workload

Allocation

We are now going to refine the mutator behavior of the ACDC benchmark tool and

describe the functions allocate_objects and proceed_in_time.

The mutator models the characteristics of dynamic objects as described in Section 5.1.

It creates more small objects than large ones and more short living objects than long

living objects. We model the size and the lifetime of an object as random variables and

we use probability distributions to determine their values.

We group the allocated objects in simple size classes that derive from the binary loga-

rithm of the size of an object. We define a size class as follows:

Let sz : Objects→ N be a mapping where an object o ∈ Objects is mapped to its size.

The binary relation “same size-class”, Rsz ⊆ Objects × Objects, is defined as follows.

Two objects are related, (o1, o2) ∈ Rsz if and only if there exists an sc ∈ N such that

2sc ≤ sz(o1) < 2sc+1 and 2sc ≤ sz(o2) < 2sc+1. It is easy to see that Rsz is an equivalence

relation and sc represents the equivalence class [sc]. We say o1 and o2 belong to the same

size-class [sc].

Allocators that use size-classes might define their size-classes in a more sophisticated

way but for our model the powers of two are sufficient.

Let lifetime : Objects → N be a mapping that determines the lifetime lifetime(o) of an

object o ∈ Objects. After the mutator reached the time threshold lifetime(o) times the

object o will be freed or expired. Objects with the same lifetime lt define the trivial

equivalence class of the equals to relation [lt].

The results from [26] and [4] suggest that the cardinality of a size-class is correlated

to the size of the objects it contains. The same applies to the number of objects that

share the same lifetime. Our goal is to derive the number of objects based on random

variables for size-class sc and lifetime lt.

We start with discrete uniform distributions for the size-class and the object lifetime.

They provide a random variable sc from the interval that satisfies the object size bounds

and a random variable lt which is bound by the maximum object lifetime. Both con-

straints are given by the runtime options.

Both random variables have an indirectly proportional effect on the number of objects

59

5. ACDC Benchmark

that will be allocated with lifetime lt and a size between 2sc and 2sc+1.

The impact on the number of objects that is caused by the random size-class and the

random lifetime is defined as follows:

impact of sc = (scmax − sc + 1)2

and

impact of lt = (ltmax − lt + 1)2

meaning that the impact is stronger if the value of the random variable has a larger

difference to its configured maximum (scmax and ltmax are runtime options). This gives

a larger number of objects for smaller size-classes and shorter lifetimes and a smaller

number of objects for larger size-classes and longer lifetimes. We even increase the effect

by modeling a quadratic impact of both effects.

The actual number of objects depends on the impact of the size-class and the lifetime and

additional runtime options to configure the mutator behavior of the ACDC benchmark.

#objects =
impact of sc× impact of lt×multiplier

#threads× ltmax

The constants multiplier, #threads and ltmax are the runtime parameters. Multiplier

is used to directly affect the heap size while #threads and ltmax are used as correction

parameters. The size of the heap grows proportionally with the number of threads

and the maximum object lifetime. This fact is compensated by the denominator of the

formula to achieve a constant per-thread memory consumption. If, on the other hand,

the user wants to have a bigger heap, this can be achieved by setting the multiplier

accordingly.

This model is used in the allocate_objects function called in Algorithm 1. The pseudo

code of allocate_objects is shown in Algorithm 2. Again, the basic idea is to retrieve

a random value for size and lifetime and then calculate how many objects with this very

size and lifetime should be allocated. The mutator stores a reference to the allocated

objects in a buffer. This object buffer groups the objects by their lifetime. When time

advances, the corresponding group of objects in the buffer are either freed or expired,

depending on the chosen memory model.

60

5.3. Modeling the Workload

Algorithm 2 Allocate objects in ACDC

1: bytes ← 0
2: get sc from uniform distribution
3: get lt from uniform distribution
4: calculate #objects from impact of sc and impact of lt
5: for i=0; i< #objects; i++ do
6: object o ← new object in size-class sc
7: object buffer[lt] ← object buffer[lt]

⋃
o

8: bytes ← bytes + sz(o)
9: end for

10: return bytes

Since the number of objects is derived from the random variables size-class sc and

lifetime lt, the number of objects is also a random variable. The probability density

function follows the product of the quadratic impacts for sc and lt. This models the

described characteristics of dynamic objects resulting in a large number of small short-

living objects and a small number of large long-living objects.

Figure 5.1 shows an example histogram of the lifetime distribution. The example is taken

from the experiment in Section 6.4.3 using a time threshold of 212 running 6 mutator

threads for a benchmark runtime of 100 time advances. It shows a configured maximum

lifetime of 10 and illustrates that a shorter lifetime is much more likely than a larger

one. When the lifetime reaches the configured maximum object lifetime the number of

objects approaches zero.

In Figure 5.2 we can see the characteristics of the randomly chosen size-class for the

same experiment. In this example, the configured minimum size-class is three and the

maximum size-class is 12. Again, smaller objects are much more likely to be allocated

than larger ones. This scenario also reflects the characteristics of dynamically allocated

objects in C programs.

Time Progression

The ACDC main loop in Algorithm 1 is repeated until the configured time threshold is

reached. When this happens, the mutator discards the objects whose lifetime has ended.

Depending on the configured memory model, the routines refresh_future and

delete_past either perform a refresh operation on objects that have some remain-

61

5. ACDC Benchmark

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

1 2 3 4 5 6 7 8 9 10

N
u

m
b
e

r
o
f

o
b
je

c
ts

Object lifetime

Figure 5.1.: Example lifetime histogram

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

1 2 3 4 5 6 7 8 9 10 11 12

N
u
m

b
e
r

o
f
o

b
je

c
ts

Object size-class

Figure 5.2.: Example size-class histogram

62

5.3. Modeling the Workload

Algorithm 3 Advancing time in ACDC

1: if using short-term memory model then
2: refresh future()
3: else if using persistent memory model then
4: delete past()
5: end if
6: thread time ← thread time + 1

ing lifetime or perform a free operation on objects where the lifetime has ended. The

lifetime is set for each object at allocation and determines for how many time advances

of the mutator the object will survive.

In the short-term memory case, an object that must be kept alive is refreshed with

its remaining lifetime as expiration extension. An objects o with a remaining lifetime

of lt is treated with a scm_refresh(o, lt) call. This happens each time a mutator

calls refresh_future. Note that this adds redundant expiration dates to short-term

memory objects because the exact lifetime is known at the time of allocation and the first

refresh operation already set the correct expiration date. However, we do not exploit

this perfect knowledge of object lifetimes so we simulate a scenario where the mutator

does not know the lifetime of an object at allocation time and therefore has to refresh

an object more than once. After refreshing, scm_tick is called to advance time in the

sense of short-term memory.

In the persistent memory model configuration, we determine the set of objects with no

lifetime left. We deallocate them using the free call from the standard C library.

After processing the dynamic objects, the mutator increments its software clock and

returns to the main loop until the software clock (thread time) reaches the configured

benchmark runtime.

5.3.3. Multi Mutator Behavior

The ACDC benchmark system supports multiple mutator threads and the user can

choose between a shared and a unshared setup. In the unshared setup, all mutator

threads behave the same, i.e., along the behavioral pattern described in the previous

section. In a shared setup, a configurable amount of objects is shared with other threads.

63

5. ACDC Benchmark

Allocating Shared Objects

Algorithm 4 Allocate shared objects in ACDC

1: bytes ← 0
2: get sc from uniform distribution
3: get lt from uniform distribution
4: calculate #objects from impact of sc and impact of lt
5:

6: for object so in sharing pool do
7: if so not marked by this thread then
8: object buffer[lt] ← object buffer[lt]

⋃
so

9: set mark bit on so
10: if all mark bits set on so then
11: sharing pool ← sharing pool \{so}
12: end if
13: end if
14: end for
15:

16: for i=0; i< #objects/share ratio; i++ do
17: object o ← new object in size-class sc
18: sharing pool ← sharing pool

⋃
o

19: bytes ← bytes + sz(o)
20: end for
21:

22: for i=#objects/share ratio; i< #objects; i++ do
23: object o ← new object in size-class sc
24: object buffer[lt] ← object buffer[lt]

⋃
o

25: bytes ← bytes + sz(o)
26: end for
27:

28: return bytes

All threads allocate shared and unshared objects as described in the pattern in Algo-

rithm 2. The shared objects do not end up directly in the object buffer but they are put

in a separate data structure called sharing pool. The sharing pool is a concurrent lock-

based linked list to ensure mutual exclusion among the running threads. From there,

all other threads can get a reference to the shared objects and set a mark bit on the

object. This bit indicates if a thread already got a reference to this object. Every thread

that fetches a shared object from the sharing pool increments a reference counter on the

object that is initially zero. We need this counter to later decide if it can be freed or not.

This technique is related to domain-specific garbage collection presented in Chapter 2.

64

5.3. Modeling the Workload

We look at the implementation details in Section 5.4. The last thread that reads the

reference of a shared object sets its mark bit and removes it from the sharing pool. In

this fashion, shared objects are distributed among the threads.

Algorithm 4 shows the extension to the function allocate objects where a percentage of

share ratio of the allocated objects are put in the sharing pool instead of being directly

stored in the object buffer. In Lines 6 to 15, the mutator checks the sharing pool for

objects that it has not fetched before, i.e., the corresponding mark bit is not set yet. Now

the mutator copies the reference to so to its corresponding object buffer. If the mutator

was the last thread that set its flag, i.e., all mark bits are set, the object is removed

from the sharing pool. As a consequence, the size of the sharing pool is bounded if all

threads make progress.

In Line 17 to 21 of Algorithm 4, the configured share ratio of objects is allocated and put

in the sharing pool. Note that the allocating thread will receive these objects again in

the next round when inspecting the sharing pool. Lines 23 to 27 allocate the remaining

(100− share ratio)% of objects and put them directly in the object buffer.

Multi-threaded Time Progression

When ACDC is configured to run multiple threads that share objects among each other

the functions refresh_future and delete_past have to handle shared objects in a

different way than unshared objects.

Using the short-term memory model, a shared object so with a remaining lifetime lt

is refreshed with a scm_global_refresh(so,lt) call. Objects that have ended their

lifetime are not refreshed and will be reclaimed by the short-term memory system. After

refreshing the shared objects, we call scm_global_tick to notify our short-term memory

implementation that the calling thread is ready to advance global time.

In the persistent memory model, objects with an ended lifetime are freed like in the

single-thread case. The only difference is that we have to guarantee that only one

thread actually frees the object. Determining the thread that keeps the last reference

to the shared object is done by the reference count of the object. Every thread that

wants to remove an unused object decrements the reference count and the one thread

that decrements the counter to zero calls free to reclaim the memory.

65

5. ACDC Benchmark

pointer to dynamically allocated object

rc

6 bits 58-bit thread_map

Figure 5.3.: Memory layout of the shared pointer structure.

5.4. Implementation Details

In this section, we examine the most important parts of the ACDC implementation.

Basically, the mutators only allocate objects, store references to them for a while in

a buffer, and later free or refresh them. We describe the data structures and discuss

the synchronization primitives we use to handle concurrent access to the shared data

structures.

5.4.1. Data Structures

Shared Pointer

To make the sharing of objects easier, we need to add some meta data to every shared

object. We do not modify the object header that is used by the allocator because we

designed the benchmark tool to be usable with any allocator. We create a wrapper

called shared pointer around every object and add a 6-bit field as a reference count and

a 58-bit field as thread mask to track how many and which threads share an object.

These two fields can be combined in one 64-bit word, limiting the number of threads

to 58. Supporting more threads would increase the overhead by at least another word.

However, such a modification would be possible. Figure 5.3 illustrates the memory

layout of the shared pointer structure. We use this wrapper also for unshared objects

to keep the code more general at the expense of two extra words per object.

Whenever a dynamic object is allocated, it is assigned to a shared pointer wrapper. In

case of a shared object, the reference count and the thread mask are important. The

distribution of shared objects is done by a common data structure called sharing pool

where the allocating thread puts in a new shared object and all threads (including the

66

5.4. Implementation Details

shared_pointer *sp

shared_pointer_node *next

shared_pointer_node *prev

Figure 5.4.: Memory layout of the shared pointer node structure.

allocating thread) fetch the object from the pool. The bit mask is initially zero which

means that no thread has a reference to this object. Each thread has a unique identifier

starting from zero up to 57. When the ith bit in the thread mask is set, this means that

the thread with id i has copied a reference to the object. When the thread mask is full,

i.e., all bits are set, this means that all threads have got a reference to this object and

consequently it does not need to stay in the pool any longer. The last thread that marks

its bit removes the object from the pool.

In addition to that, every thread that receives a reference to an object, increments the

reference count of this object. This reference count is not important for the distribution

of the shared objects but for being able to free the object later on. When the lifetime

of an object ends for a thread, this thread decrements the reference count and deletes

its reference to this object. Only the last thread that performs this step decrements the

reference count to zero and is allowed to free the object.

List of Shared Pointers

Shared pointers are organized in doubly-linked lists. A straight forward way would

be to add a previous and next pointer to the shared pointer structure. However, this

is not possible in our case because a shared pointer needs to be stored in multiple

lists since multiple threads might have a reference to a shared object. We define a

shared pointer node structure to add list functionality to a shared pointer. Figure 5.4

depicts the layout of the shared pointer node structure.

A list of shared pointer nodes is called shared pointer list. It keeps a reference to the

beginning and the end of the doubly-linked list and also stores a mutex variable to protect

concurrent access if necessary. Figure 5.5 shows the layout of this data structure.

67

5. ACDC Benchmark

mutex

shared_pointer_node *first

shared_pointer_node *last

Figure 5.5.: Memory layout of the shared pointer list structure.

shared_pointer_list *

b
b
b

[0]

[1]

[2]

[max_lifetime]

shared_pointer_list *

shared_pointer_list *

shared_pointer_list *

Figure 5.6.: Memory layout of the object buffer data structure. Each array element
represents a common lifetime.

Object Buffers

Each thread stores its references to both shared and unshared objects in distinct object

buffers. An object buffer is an array of shared pointer lists where each array element

represents a common lifetime, i.e., all objects in one shared pointer list have the same

lifetime. Consequently, the length of the array must be at least the maximum lifetime

plus one, because we also need one slot for objects with lifetime zero.

The object buffer is organized as a cyclic buffer where the thread time modulo the

maximum lifetime is used as an index into that array of size max lifetime + 1. When

the thread time is t and the length of the buffer is l then (t+ i)%l gives the index of the

shared pointer list that contains objects with remaining lifetime i. Figure 5.6 shows the

organization of an object buffer.

Since shared and unshared objects are treated differently, each thread has one object

buffer for shared objects and one for unshared objects. Their functionality, however, is

the same.

68

5.5. Summary

Sharing Pool

As mentioned before, we maintain a shared data structure to distribute the references

to objects which are shared among threads. We call this the sharing pool although

it is implemented as an ordinary shared pointer list. When a thread allocates shared

objects, it puts them in the sharing pool, i.e., it enqueues them in a list. In order to

not lock the list for every single object that a thread creates, this is done in a batch-

like fashion. The mutator allocates shared objects in a loop and enqueues them in a

temporary shared pointer list. When the loop is finished, the sharing pool is locked using

a mutex variable and the temporary list is added to the sharing pool in one constant-time

concatenation operation.

When the mutator threads inspect the sharing pool for new shared objects, they need to

lock the sharing pool as well and iterate through it once. This operation runs in linear

time with respect to the length of the sharing pool list. However, the size of this list is

usually small since only a small fraction of all allocated objects is shared.

5.5. Summary

In this chapter we have presented the main aspects of ACDC, a memory management

benchmarking tool that supports both the persistent and the short-term memory model.

The key features of ACDC are the ability to run multiple mutators that share memory

and have independent clocks. This allows us to utilize all features of our short-term

memory implementation LIBSCM. Furthermore, ACDC implements the same mutator

behavior using the persistent memory model in order to get a comparison of the temporal

and spatial performance metrics of both models.

69

6. Experimental Evaluation

In the previous chapters we have discussed design decisions we have made to meet certain

performance goals. In this chapter we run a number of experiments to empirically show

if we met our goals. We start with a description of the experimental environment and

then proceed to the definition of the workload, the system under test and the factors

that we want to study. We perform various experiments to evaluate the impact of these

factors on the performance of our implementation of short-term memory.

6.1. Prerequisites

6.1.1. Experimental Setup

All experiments that are presented in this chapter were carried out on the same hardware

platform. We used an AMD based 24 core server machine with 48 GB of shared memory.

The hardware specifications are given in Table 6.1.

Unless stated otherwise, we repeated all experiments until we reached 95% confidence

for an interval within 10% of the arithmetic mean value.

6.1.2. Technical Measurement Details

Time

For the time measurements of the LIBSCM calls we use the Read Time-Stamp Counter

(RDTSC) operation [27] of the x86 instruction set architecture. The time-stamp counter

is a register that is incremented every clock cycle. We read the contents of this register

6.1. Prerequisites

CPU type: AMD Opteron 8425 HE
CPU Freq: 2.1 GHz
Number of CPUs: 4
Cores/CPU: 6
L1d cache: 64 kB per core, 2-way
L1i cache: 64 kB per core, 2-way
L2 cache: 512 kB per core, 16-way
L3 cache: 5118 kB per CPU, 48-way
Memory: 48 GB

Table 6.1.: Hardware Specifications for all experiments

at the beginning and the end of the operation we want to measure. This gives us a time

metric in CPU cycles.

We are only interested in the temporal performance of the LIBSCM operations but not

of the underlying allocator. Thus we only count the cycles spent inside LIBSCM by

subtracting the time spent in the allocation routines of GLIBC.

Space

Space measurements need some more attention because we use different memory man-

agement systems. In the persistent memory model we use the malloc and free calls

from the standard library where one can use the mallinfo call defined in malloc.h [7].

LIBSCM is based on malloc and free but also adds dynamic memory overhead by itself.

Using mallinfo we have no chance to distinguish the space for managed objects from

the space for bookkeeping.

We want to be able to compare the memory consumption for both the persistent and

the short-term memory model. Specifically, we are interested in the additional mem-

ory consumption that is introduced by the over-approximation that short-term memory

makes on the set of needed objects.

For this comparison we instrument the code of our benchmark tool ACDC. In the

persistent-memory configuration we count the number of allocated and freed objects,

and keep track of the allocated and freed bytes. Thereby we are able to calculate the

number of used objects and bytes at any time instant during the execution of ACDC. For

the short-term memory configuration this is not enough because we do not know when

71

6. Experimental Evaluation

LIBSCM actually frees an object. Therefore we also instrument the code of LIBSCM

to keep track of every allocated and freed object together with its size. Furthermore

we add an API call to the library so that an application using LIBSCM can fetch the

memory information at any time.

Listing 6.1 gives the definition of the memory statistics calls described above. This

functionality is only available if LIBSCM is compiled with the -DSCM_PRINT_MEM option.

Note that the logging and calculation of memory consumption adds runtime overhead to

LIBSCM. When running experiments that measure execution time, we compile LIBSCM

without this functionality.

1 /∗
2 ∗ s t r u c t scm mem info i s used to f e t c h in format ion about memory

3 ∗ consumption during runtime .

4 ∗/
5 struct scm mem info {
6 unsigned long a l l o c a t e d ; /∗ t o t a l a l l o c a t e d by t e s ∗/
7 unsigned long f r e e d ; /∗ t o t a l f r e ed b y t e s ∗/
8 unsigned long overhead ; /∗ overhead by LIBSCM ∗/
9 unsigned long num al loc ; /∗ t o t a l o f a l l o c a t e d ob j . ∗/

10 unsigned long num freed ; /∗ t o t a l o f f r e ed o b j e c t s ∗/
11 } ;

12

13 /∗
14 ∗ scm get mem info i s used to query the con ten t s o f a

15 ∗ s t r u c t scm mem info from LIBSCM

16 ∗/
17 void scm get mem info (struct scm mem info ∗ i n f o) ;

Listing 6.1: Definition of scm mem info and scm get mem info from stm-debug.h

6.2. Workload Selection

“The workload is the most crucial part of any performance evaluation project.” [28]

In this section we describe the way we exercise our short-term memory implementation

LIBSCM using our synthetic ACDC benchmark tool. We briefly discuss the major

72

6.2. Workload Selection

considerations in selecting the workload, i.e., the services exercised by the workload, the

level of detail, representativeness, and timeliness. [28]

6.2.1. Services Exercised

We use the term System Under Test (SUT) to denote our short-term memory implemen-

tation LIBSCM. In order to understand if all services of the SUT are properly exercised

we have to point out which services LIBSCM provides. The obvious choice of a service

interface is the API of LIBSCM (see Section 4.2). Hence, the services of LIBSCM are

the memory management calls to refresh an object and to tick. We define the following

functions of the LIBSCM API as the services of our System Under Test.

• scm_refresh to refresh thread local objects

• scm_global_refresh to refresh shared objects

• scm_tick to increase the thread local notion of time

• scm_global_tick to increase the global notion of time

The goal is to select a workload that exercises all services in a way that we can reason

about the performance of each of them as well as the combination of the services. ACDC

can be configured to share objects between multiple threads and all threads have their

own speed in time advance. In this way, all of the four services are exercised. Of course,

ACDC was designed with this considerations in mind.

6.2.2. Level of Detail

After we have defined the services of our System Under Test it is clear that the workload

will consist of a series of local or global refresh and tick calls. Now we have to define the

level of detail that the workload should represent. We use the frequency of the service

calls to model the workload for the SUT.

Let us review the characteristics of the way we use the short-term memory model.

The model allows us to set the expiration date of an object and to advance time. We

assume that multiple objects will be refreshed between two subsequent tick calls since

73

6. Experimental Evaluation

applications that make use of dynamic memory usually allocate more than just one

object. On the other hand, subsequent tick calls without refreshes in between, we

consider rather unlikely. Instead, one would set a smaller expiration extension on the

objects and tick less often. As a consequence, we define the frequency of refresh calls

to be much higher than the frequency of tick calls. Furthermore, we assume that local

refresh calls have a higher frequency than global refresh calls because ususally more

objects are thread local than shared among threads.

ACDC allows us to configure the frequencies of the API calls in two ways. Firstly, the

time threshold determines the relative frequencies of refresh and tick calls. Setting a

higher threshold increases the number of refreshs while a smaller threshold decreases the

number of refresh calls between two subsequent tick calls. Secondly, the relative amount

of shared objects is direcly proportional to the relative frequencies of local and global

refresh calls. A higher share ratio yields a higher ratio of global refresh calls.

6.2.3. Representativeness

Another important goal is to create a workload that reflects typical application behavior.

This goal is not easy to fulfill because applications can differ dramatically in their demand

for dynamic memory. However, in [4] and [5] the authors give some characteristics on

the allocation behavior of allocation intensive applications. We have already covered

this characteristics in Section 5.1. ACDC also adds computations in between allocations

to relax the utilization of the memory bus. These computations are simple calculations

of logarithms of double values taken from the C standard math library. Of course, such

a workload can never represent all applications but ACDC makes the best effort to cover

a realistic snapshot of allocation intensive applications.

6.2.4. Timeliness

Timeliness is the workload property that tells us if the chosen workload represents the

current usage pattern of systems, applications, users. When we design the workload

we must make sure that we do not use outdated information. Fortunately, the use

cases for the C programming language change slowly and the applications that were

investigated in [4] and [5] in the early 1990s are still used today. We are confident

74

6.3. Experimental Design

that this usage pattern still represents todays demands on a dynamic heap memory

management system.

6.3. Experimental Design

“The goal of a proper experimental design is to obtain the maximum information with

the minimum number of experiments.” [28]

In this section we describe an experimental design that allows us to separate the effects

of the factors that affect the performance of the system. We also determine which factors

have significant impact to further investigate this specific factors. We apply statistical

tools to cope with measurement errors and argue about statistical significance. [28]

6.3.1. Terminology

The terms we use in this section are taken from [28]. We briefly describe them here.

The response variable is the outcome of an experiment. Usually, this is a performance

metric of the system, e.g., the response time of LIBSCM operations.

The variables that effect the response of a system are called factors. Since we want

to evaluate a multi-threaded memory management system, the number of threads is an

obvious factor that we want to analyze. We identify all interesting factors in the next

section.

For every factor we can identify the levels that it can take. For example, the number of

threads can be any positive integer with an upper bound caused by physical limitations,

e.g. the number of cores on the hardware platform.

The factors whose effects needs to be quantified are called primary factors. Those

factors that affect the response but we do not want to quantify are called secondary

factors. As an example, the CPU clock speed will affect the execution time of our

operations but we are not interested in this effect. However, we want to take care that

the secondary factors are under control and do not change by chance.

The repetition of an experiment is called replication. We perform a number of repli-

75

6. Experimental Evaluation

cations of our experiments to eliminate measurement errors. The specification of the

number of experiments, the factor and level combinations and the number of replications

is called a design. In the following sections we set all these terms to our demands and

perform the resulting design.

6.3.2. Factors

We expect that the following factors have an performance impact on LIBSCM.

Number of threads: The LIBSCM API calls that operate on shared data are likely to

experience contention on memory accesses. We are interested in how much this

bounds the scalability of our system.

Descriptor page size: The impact of this factor tells us if the use of descriptor pages

instead of descriptor lists is a significant choice. A 24 byte descriptor page contains

only a single descriptor which is nearly equivalent to a list of descriptors.

Maximum lifetime (max expiration extension): This defines the granularity of life-

times in an application that uses short-term memory.

Collection strategy: The setting of the collection strategy moves the costs from the

refresh to the tick operations, and vice versa.

Time Threshold (heap size): The size of the managed heap is of particular interest for

the evaluation of every memory management system.

The compiler optimization level, architecture properties like cache size and CPU speed as

well as the remaining ACDC settings, e.g., the ratio of shared objects, are the secondary

factors that may have an performance impact. We control this factors in our experiments

to ensure that their influence is not changing.

6.3.3. Evaluation

We perform a 2kr factorial design [28] to determine the impact of the primary factors.

This design investigates all combinations of k factors at two different levels. It is im-

portant that we can assume a monothonic response when we monotonically change the

76

6.3. Experimental Design

Factor Label (-) (+)
Number of threads A 2 8
Descriptor page size B 24 4096
Max. lifetime C 10 30
Collection strategy D lazy eager
Time threshold E 218 220

Table 6.2.: Primary factor/Level settings for the 2kr factorial design.

Max object lifetime: 10
Benchmark runtime: 2000 iterations
Min object size: 23 bytes
Max object size: 216 bytes
Shared objects: yes
Share ratio: 10%
GCC optimization: O2

Table 6.3.: Secondary factor settings for the 2kr factorial design.

level of a factor. The experiment for each factor combination is repeated r times to take

care of measurement errors. This results in 2kr experiments that we have to run. Given

five primary factors and five replications we run 160 experiments to isolate the effect of

each factor and the measurement errors.

We assume that the most important response is the execution time for each API call.

However, the primary factors also affect the memory consumption and the throughput of

the system. We investigate this effects when we run detailed experiments for the factors

that have the strongest impact on execution time.

Table 6.2 shows the levels that we set for the primary factors. We assign a label (A to E)

to each factor to give a short-hand factor combination notation, e.g. ADE stands for the

combined performance impact of factor A, D and E. The two different levels are labeled

with a negaive (-) and a positive (+) sign. The secondary factors and their settings are

listed in Table 6.3.

Allocation of Variation

We use the signtable method described in [28] to calculate the percentage of variation

of each factor in the 2kr experimental design. We performe the same setup for each of

77

6. Experimental Evaluation

 0

 10

 20

 30

 40

 50

 60

 70

A B C D E A
B

A
C

A
D

A
E

B
C

B
D

B
E

C
D

C
E

D
E

A
B

C

A
B

D

A
B

E

A
C

D

A
C

E

A
D

E

B
C

D

B
C

E

B
D

E

C
D

E

A
B

C
D

A
B

C
E

A
B

D
E

A
C

D
E

B
C

D
E

A
B

C
D

E

P
e

rc
e

n
ta

g
e

 o
f

V
a

ri
a

ti
o

n

Combinations of Factors

A: number of threads, B: descriptor_page size,
C: max lifetime, D: collection strategy, E: time threshold

Figure 6.1.: Variation of the runtime of the scm refresh call influenced by the combina-
tions of factors A, B, C, D, E.

the LIBSCM API calls and derive the impact of each factor for the execution time of

this function.

Figure 6.1 shows the percentage of variation of the scm_refresh operation. The com-

bination of factors is given as concatenation of the factor label on the x-axis. We see

that the collection strategy (D) has the strongest impact (65%) on the execution time

of scm_refresh. In the eager collection scheme the refresh operations only create de-

scriptors while in the lazy collection scheme they also process one expired descriptor.

The descriptor page size (B) also shows significant influence because adding a descriptor

to a non-full descriptor page is cheaper than adding a new node of a descriptor page

list. The maximum object lifetime accounts for about 5% of the performance variation.

This can be explained with the larger descriptor buffers used in LIBSCM and possible

consequences on locality. However, we only concentrate on factor combinations with

more than 10% variation. The number of threads (A) causes little variation and we can

assume that scm_refresh scales well with the number of threads. Also, the size of the

78

6.3. Experimental Design

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45
A B C D E A

B

A
C

A
D

A
E

B
C

B
D

B
E

C
D

C
E

D
E

A
B

C

A
B

D

A
B

E

A
C

D

A
C

E

A
D

E

B
C

D

B
C

E

B
D

E

C
D

E

A
B

C
D

A
B

C
E

A
B

D
E

A
C

D
E

B
C

D
E

A
B

C
D

E

P
e

rc
e

n
ta

g
e

 o
f

V
a

ri
a

ti
o

n

Combinations of Factors

A: number of threads, B: descriptor_page size,
C: max lifetime, D: collection strategy, E: time threshold

Figure 6.2.: Variation of the runtime of the scm global refresh call influenced by the
combinations of factors A, B, C, D, E.

managed heap (time threshold, E) has no significant impact on the refreshing of local

objects. None of the combinations of factors show any impact worth mentioning.

In Figure 6.2 we see the allocation of variation of the scm_global_refresh call. The

results are similar to the scm_refresh call with the exception of factor A. The number

of threads account for more than 40% of the performance impact. We can assume that

refreshing shared objects results in contention on shared memory locations.

The percentage of variation for the scm_tick call is presented in Figure 6.4. Again, the

collection strategy has the biggest influence on the execution time. The is explained with

the extra collection work that the tick operations have to perform in the eager collection

configuration. For scm_tick, the size of the heap (time threshold) shows significant

impact on the performance. Furthermore the combination of the heap size and the

collection strategy (factor DE) accounts for about the same percentage of variation.

This means, that the size of the heap only affects the performance in combination with

the collection strategy. Eager collection reclaims all expired objects as soon as possible,

79

6. Experimental Evaluation

 0

 10

 20

 30

 40

 50

 60

A B C D E A
B

A
C

A
D

A
E

B
C

B
D

B
E

C
D

C
E

D
E

A
B

C

A
B

D

A
B

E

A
C

D

A
C

E

A
D

E

B
C

D

B
C

E

B
D

E

C
D

E

A
B

C
D

A
B

C
E

A
B

D
E

A
C

D
E

B
C

D
E

A
B

C
D

E

P
e

rc
e

n
ta

g
e

 o
f

V
a

ri
a

ti
o

n

Combinations of Factors

A: number of threads, B: descriptor_page size,
C: max lifetime, D: collection strategy, E: time threshold

Figure 6.3.: Variation of the runtime of the scm tick call influenced by the combinations
of factors A, B, C, D, E.

i.e., as part of the tick call. In this case the execution time depends on the number

of expired objects which is proportional to the total size of the heap. The maximum

object lifetime has only little influence on the performance. Still, since ACDC keeps

the number of objects constant per thread a larger lifetime yields more life objects than

expired objects so the combination with the collection strategy (factor CD) is responsible

for the performance variation.

Figure 6.4 gives the results for scm_global_tick. They are similar to the results

of scm_tick because both functions perform the same operations only on different

data structures. However, the number of threads accounts for more variation than

in scm_tick because eager collection of shared objects may result in memory contention

on the descriptor counts. Combination AD suggests that the number of threads only

impacts performance together with the collection strategy.

80

6.3. Experimental Design

 0

 10

 20

 30

 40

 50

 60

A B C D E A
B

A
C

A
D

A
E

B
C

B
D

B
E

C
D

C
E

D
E

A
B

C

A
B

D

A
B

E

A
C

D

A
C

E

A
D

E

B
C

D

B
C

E

B
D

E

C
D

E

A
B

C
D

A
B

C
E

A
B

D
E

A
C

D
E

B
C

D
E

A
B

C
D

E

P
e

rc
e

n
ta

g
e

 o
f

V
a

ri
a

ti
o

n

Combinations of Factors

A: number of threads, B: descriptor_page size,
C: max lifetime, D: collection strategy, E: time threshold

Figure 6.4.: Variation of the runtime of the scm global tick call influenced by the com-
binations of factors A, B, C, D, E.

81

6. Experimental Evaluation

6.4. Evaluation of the Important Factors of LIBSCM

The evaluation of our experimental design already gives us some idea of the factors that

affect the performance of the LIBSCM API calls. In this section we explore these factors

in more detail beginning with a scalability experiment. Starting with one mutator, we

increase the number of threads and report the temporal performance of our short-term

memory system. Another factor that deserves our attention is the collection strategy that

LIBSCM uses. We perform a scalability experiment for both lazy and eager collection.

Last but not least, the experimental design also gives a hint that the time threshold,

which controls the size of the heap, has an impact on performance. In this section we

take a detailed look at the performance of the API calls while we change the number of

threads, the collection strategy, and the heap size of the ACDC benchmark tool.

6.4.1. Collection Strategy

LIBSCM implements two different collection strategies namely eager collection and lazy

collection. The lazy collection strategy is the setting that allows a maximum of incre-

mentality for object reclamation. At each refresh operation at most one expired object

is freed. Eager collection reclaims expired objects as soon as possible, i.e., right after

the tick call that expired these objects, so we expect maximum throughput using this

strategy. We now describe the performance impact of this strategies.

Expectations

The evaluation of our experimental design in Section 6.3.3 shows that the collection

strategy accounts for about 50% of the variation of the response time of the LIBSCM

functions. However, the 2kr setup does not tell us if the operations become faster or

slower on either strategy setting. For the refresh calls, we expect a better performance

using the eager collection strategy. The reason is that all expired descriptors are pro-

cessed at the tick call which is the earliest possible moment to do so. Subsequent refresh

calls do not need to process any descriptor because there are no more expired descriptors

in the system. On the other hand we expect a longer execution time for the tick calls

because in the eager collection strategy all expired descriptors are reclaimed here. This

is the setting for maximum throughput but the time for the tick calls now depends on

82

6.4. Evaluation of the Important Factors of LIBSCM

Max object lifetime: 10
Benchmark runtime: 200 iterations
Min object size: 23 bytes
Max object size: 212 bytes
Time threshold: 215 bytes
Memory model: short-term
Shared objects: yes
Share ratio: 20%

Table 6.4.: ACDC settings for the scalability experiment

the number of objects that expire at this tick call.

For the lazy collection strategy we expect the opposite effect. The tick calls process only

one descriptors after expiring a set of descriptors. This is a constant time operation with

respect to the number of expired descriptors or objects. Every subsequent refresh call

expires at most one descriptor. As a consequence, the refresh calls also run in constant

time with respect to the number of expired descriptors or objects.

We perform detailed experiments for scalability in terms of the number of threads and

the heap size for both, the lazy and eager collection strategy.

6.4.2. Number of Threads

We start with an experimental setup where we change the number of mutators that

work with LIBSCM. We run the experiment on the hardware platform described in

Table 6.1 which supports 24 concurrent threads. We do not want to fully utilize the

system but make sure that every thread may run without preemption. Therefore we set

the maximum number of concurrent threads to 12 and repeat the experiment starting

from 1 up to 12 threads. The remaining factors we leave unchanged for every run. We

repeat the whole experiment with different seed values for ACDC until we reach 95%

confidence within 10% of the arithmetic mean value. A summary of the ACDC settings

is given in Table 6.4. An explanation of the ACDC settings is given in Section 5.3.1. The

LIBSCM settings are the default values defined in scm-desc.h and stm.h. We discuss

the experiment using both lazy and eager collection.

83

6. Experimental Evaluation

 0

 100

 200

 300

 400

 500

 600

 700

1 2 3 4 5 6 7 8 9 10 11 12

E
x
e

c
u
ti
o

n
 t
im

e
 i
n

 C
P

U
 c

y
c
le

s
 (

lo
w

e
r

is
 b

e
tt
e

r)

Number of threads

refresh
global_refresh

tick
global_tick

Figure 6.5.: Scalability of LIBSCM for an increasing number of threads using the lazy
collection strategy. The graph shows the arithmetic mean execution time
including a 95% confidence interval in CPU cycles.

Expectations

We measure the execution time of all LIBSCM API calls. Concerning the number of

threads, the implementation of LIBSCM is designed to support constant time execution

for all operations. Thus we expect the execution time to be the same for every number

of threads that use LIBSCM. However, the experimental design encourages a detailed

examination of the scalability of global_refresh.

Results

In Figure 6.5 we see the result of the scalability experiment using lazy collection. On

the x-axis we change the number of threads from 1 up to 12. The response on the

y-axis is the execution time of each API call measured in CPU cycles. The red line

shows the execution time of the refresh operation. We see a constant behavior for all

factor levels. The green dashed line is more interesting. It shows the average execution

time of global_refresh. Here we see an increasing execution time with the number of

84

6.4. Evaluation of the Important Factors of LIBSCM

threads although the operations executed in this function do not change with the number

of threads. The reason is contention on the descriptor count of shared objects. Two

or more threads that increment or decrement the descriptor count increase the chance

of cache misses because the cache coherence forces modified cache lines to be written

back to memory before another thread running on another core can update it. We

used OProfile [29] to measure the cache misses that occurred at the atomic increments

and decrements of the descriptor count. When we increased the number of threads we

observed an increasing number of cache misses at this locations.

A similar behavior can be observed for the tick calls. The blue dashed line depicts

the average execution time of tick and the pink dotted graph shows the execution

time of global_tick. Again, since tick is a thread local operation, it shows scalable

performance with an increasing number of threads at about 300 CPU cycles on average

whereas global_tick shows increasing execution time when adding more workers to the

systems.

The most significant impact happens between one and two threads. Two sources of

overhead are responsible for that. Firstly, the global time variable is not shared and

furthermore a global_tick call is usually preceded by a global_refresh call. Thereby

the global time variable is already in the cache and an increment on this memory location

does not affect other caches. Secondly, global_tick contains two branches which always

evaluate to true in case of only one thread. This supports branch prediction and prevents

from pipeline stalls. Of course, the cache locality adds the greater portion of overhead

to the global_tick than branch prediction.

For more than two threads the execution time of global_tick is slightly increas-

ing and even constant for fewer threads. The reason for the better scalability than

global_refresh is that only one thread actually advances global time. With more

threads added to the system the likelihood for one thread to advance the global time de-

creases. This mitigates the penalty for the cache misses. Still, we consider global_tick

to haven an execution time proportional to the number of threads although it scales

much better than global_refresh.

Figure 6.6 shows us the same scalability experiment using the eager collection strategy.

Again, the refresh operation stays constant but runs in shorter time than using the

lazy strategy because it only creates a new descriptor now, but does not process expired

descriptors. Also global_refresh runs faster in this configuration for a small number

85

6. Experimental Evaluation

 10

 100

 1000

 10000

 100000

1 2 3 4 5 6 7 8 9 10 11 12

E
x
e

c
u
ti
o

n
 t
im

e
 i
n

 C
P

U
 c

y
c
le

s
 (

lo
w

e
r

is
 b

e
tt
e

r)

Number of threads

refresh
global_refresh

tick
global_tick

Figure 6.6.: Scalabilty of LIBSCM for an increasing number of threads using the eager
collection strategy. The response is the arithmetic mean execution time of
the LIBSCM API calls measured in CPU cycles.

of threads because it does not process expired descriptors either. However, for a large

number of threads the execution time gets even bigger than in lazy collection mode.

Running 12 threads global_refresh takes about 200 cycles longer than in the previous

experiment running the lazy strategy. Again, this effect can be explained with additional

cache misses because the descriptor count is shared among all threads. The effect is

stronger than before because the total operations in global_refresh is smaller in eager

collection mode and thereby the chance of contention is higher.

The tick call is now much slower because all the collection happens in this function now.

Since the heap size per thread is constant in this experiment, also the response for the

tick call is constant. In a later experiment, we will see how a changing heap size affects

the tick operations. Another interesting effect can be observed for the global_tick

operation. The average execution time decreases with an increasing number of threads.

This phenomenon is caused by the slower global time advance if more threads enter the

short-term memory system. Thereby shared objects expire later and thus the number

of objects that expire at every global_tick call gets smaller.

86

6.4. Evaluation of the Important Factors of LIBSCM

 0

 0.5

 1

 1.5

 2

 2.5

1 2 3 4 5 6 7 8 9 10 11 12
0 k

2 k

4 k

6 k

8 k

10 k

12 k

14 k
H

e
a

p
s
iz

e
 i
n
 M

e
g

a
b
y
te

N
u

m
b

e
r

o
f

o
b

je
c
ts

Number of threads

Heapsize using lazy collection
Number of objects using lazy collection

Heapsize using eager collection
Number of objects using eager collection

Figure 6.7.: Heap size and number of objects managed by LIBSCM for an increasing
number of threads.

ACDC aims to maintain a constant per-thread memory usage. The overall memory

consumption is proportional to the number of threads. In Figure 6.7 we measured the

total heap size and the total number of objects managed by LIBSCM in the previous

scalability experiment. On the x-axis we have the number of threads from 1 to 12.

On the left y-axis we see the total size of the heap in megabytes. The right y-axis

gives the total number of thousands of objects. The red line and the green line depict

the lazy collection strategy for the heap size and the number of objects, respectively.

The blue and pink graph give the heap size and the number of managed objects for

the eager collection scheme. We can observe that eager collection yields lower memory

consumption than lazy collection because of a lower number of objects since expired

objects are reclaimed as soon as possible. However, both configurations show direct

proportional behavior to the number of threads in the system.

Throughput

Figure 6.7 shows that the number of objects grows with the number of threads. This

means that the number of LIBSCM operations grows with the number of threads.

87

6. Experimental Evaluation

Max object lifetime: 10
Benchmark runtime: 200 iterations
Min object size: 23 bytes
Max object size: 212 bytes
Memory model: short-term
Number of threads: 6
Shared objects: yes
Share ratio: 20%

Table 6.5.: ACDC settings for the time threshold experiment

In Figures 6.5 and 6.6 we observed constant response time for all operations except

scm_global_refresh. From this we conclude that the throughput of scm_refresh,

scm_tick and scm_global_tick scales with the number of threads. We perform addi-

tional throughput experiments in Section 6.5.

6.4.3. Time Threshold

The next factor that shows a significant performance impact in the 2kr experimental

design is the time threshold. This factor controls the size of the heap that is managed

by LIBSCM. We are interested in how the execution time of the API calls scales with the

size of the heap. Therefore we perform an experiment where we increase the time thresh-

old factor between the level settings 212 and 224 bytes and measure the per-operation

execution time in CPU cycles. The remaining settings of ACDC are given in Table

6.5. We run the experiment for both, the lazy and the eager collection strategy setting.

Finally, we also measure the change of the total memory consumption as we increase

the time threshold.

Expectations

In the lazy collection configuration we expect constant behavior of all four LIBSCM

operations. None of them depends on the number of objects or the size of the heap. We

keep the number of threads constant so we do not expect any performance variation due

to concurrency issues like synchronization or contention.

88

6.4. Evaluation of the Important Factors of LIBSCM

 0

 500

 1000

 1500

 2000

12 13 14 15 16 17 18 19 20 21 22 23 24
 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

C
P

U
 c

y
c
le

s
 p

e
r

o
p

e
ra

ti
o
n

 (

lo
w

e
r

is
 b

e
tt
e

r)

H
e
a

p
s
iz

e
 i
n
 M

e
g

a
b
y
te

Time Threshold in powers of two bytes

refresh
global_refresh

tick
global_tick

Heapsize

Figure 6.8.: Execution time and memory consumption for an increasing time threshold
using the lazy collection strategy.

Eager collection, however, causes linear time execution of the tick operations with respect

to the number of expired objects. This number is proportional to the total number of

objects and therefore we expect an increasing execution time as the size of the heap

grows. The levels of the time threshold are in powers of two. Consequently, we expect

exponential growth of the heap size when we increase this factor.

Results

We start our evaluation using the lazy collection strategy. Figure 6.8 shows the results

for this setup. The x-axis gives the time threshold in powers of two. On the left y-axis

we can see the execution time of the LIBSCM operations and the right y-axis shows

the size of the heap in megabytes. The heapsize is given on a logarithmic scale and the

orange graph shows the growth of the heap with an increasing time threshold.

The red line shows the execution time of scm_refresh. Unlike our expectations it

depends on the time threshold and grows from 250 cycles up to about 500 cycles. This

can be explained with memory locality issues based on the size of the largest CPU cache

(5 MB L3 per CPU). The scm_refresh operation shows constant execution time up

89

6. Experimental Evaluation

to a time threshold of 216 and then starts to linearly increase. At a time threshold of

217 bytes the total heapsize exceeds the cache size and scm_refresh is slowed down by

capacity misses.

The green dashed line gives the execution time of scm_global_refresh. Again, we

can observe a slight increase of the operations latency starting at about the same time

threshold as scm_refresh. However, the execution time grows slower because ACDC

creates four times more local objects than shared objects.

For time thresholds smaller than 221 bytes, the scm_tick and scm_global_tick oper-

ations show a similar behavior. However, the growth is stronger than for the refresh

operations because the tick calls perform more memory operations. At a time threshold

of 221, the execution time of the tick calls increases even more because at this point,

the total heap size exceeds 30 megabytes which is the combined cache size of all four

CPUs. Note, that scm_global_tick becomes a little faster than scm_tick for large

heaps. This might be explained by the order ACDC refreshes the heap objects. Shared

objects are refreshed after local objects and therefore it is possible that the descriptor

pages of the globally clocked buffer are more likely to be preserved in the cache than

the pages of the locally clocked buffer. However, one can observe that the confidence

intervals also grow with the time threshold which makes the execution time for larger

heaps less predictable.

We repeated the experiment using the eager collection strategy. The results are presented

in Figure 6.9. Note that the execution time on the left y-axis is now given in a logarithmic

scale. The red and the green dashed line show the execution time of scm_refresh and

scm_global_refresh, respectively. They behave the same as in the lazy collection

configuration but about twice as fast because no expired descriptors are processed here.

The tick calls however, grow proportional to the total heap size because they process all

expired objects at once.

6.5. Throughput of LIBSCM Compared to the

Persistent Memory Model

The previous sections showed that the overhead of LIBSCM is small in a typical con-

figuration but so far we have only concentrated on the response time of the LIBSCM

90

6.5. Throughput of LIBSCM Compared to the Persistent Memory Model

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

12 13 14 15 16 17 18 19 20 21 22 23 24
 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

C
P

U
 c

y
c
le

s
 p

e
r

o
p

e
ra

ti
o
n

 (

lo
w

e
r

is
 b

e
tt
e

r)

H
e
a

p
s
iz

e
 i
n
 M

e
g

a
b
y
te

Time Threshold in powers of two bytes

refresh
global_refresh

tick
global_tick

Heapsize

Figure 6.9.: Execution time and memory consumption for an increasing time threshold
using the eager collection strategy.

operations. In this section we define a throughput metric to compare LIBSCM with the

persistent memory configuration of ACDC.

The ACDC benchmark suite is designed to model a realistic allocation pattern rather

than running only memory management calls. It also models a think time in between the

LIBSCM and malloc/free calls which relaxes the allocator utilization. This think time is

the same for all threads. The drawback is that we cannot use the number of completed

LIBSCM operations of a complete run of ACDC as throughput metric. Instead we

use the number of allocated bytes per second to compare the throughput of the short-

term memory configuration with the persistent memory configuration of ACDC. This

performance metric can be used because the allocation scheme of the persistent memory

configuration of ACDC emulates the pattern of the short-term memory configuration.

Furthermore, the think time is the same in both settings.

The experiments in this section also take into account the underlying allocator because

we measure the total execution time of an ACDC run instead of cycles per operation.

We now briefly review some characteristics of the allocator we use.

91

6. Experimental Evaluation

Max object lifetime: 10
Benchmark runtime: 200 iterations
Min object size: 23

Max object size: 212

Number of threads: 6
Shared objects: yes
Share ratio: 10%

Table 6.6.: ACDC settings for the throughput evaluation changing the time threshold
from 212 to 219 bytes.

In a multi-threaded application the standard C library’s allocator is ptmalloc2, named

after the POSIX threads library. Ptmalloc2 is based on the allocator by Doug Lea

and was adapted to multiple threads by Wolfgang Gloger. The main properties of the

ptmalloc2 algorithms are as follows. For large (≥ 512 bytes) requests, it is a pure best-

fit allocator, with ties normally decided via FIFO, i.e., least recently used. For small

(≤ 64 bytes by default) requests, it is a caching allocator, that maintains pools of quickly

recycled chunks. In between, and for combinations of large and small requests, it does

the best it can trying to meet both goals at once. For very large requests (≥ 128KB by

default), it relies on system memory mapping facilities, if supported. [30]

For the first throughput evaluation, we increase the time threshold and thereby the

number of objects per thread. We measure the total execution time of ACDC and also

the total number of allocated bytes. From this responses we calculate:

Throughput[MB/sec] =
Memory allocated[MB]

Execution time[s]

Table 6.6 lists the settings of the experiment and Figure 6.10 presents the results. The

x-axis gives the time threshold that we change from 212 to 219 bytes. The right y-axis

shows the execution time of ACDC running for 200 iterations. The pink dotted line

is the baseline, i.e., the execution time using the persistent memory model. The black

and the orange graph give the execution time for the short-term memory setup using

the lazy and eager collection strategy, respectively. Short-term memory introduces a

slight runtime overhead for descriptor management compared to the persistent memory

configuration. The collection strategy has no effect on the total execution time because

it does not matter when objects are reclaimed when we measure a complete program

execution.

92

6.5. Throughput of LIBSCM Compared to the Persistent Memory Model

 0

 2

 4

 6

 8

 10

 12

 14

 16

12 13 14 15 16 17 18 19
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

T
h

ro
u

g
h

p
u

t
in

 M
e
g

a
b

y
te

s
/s

e
c
o

n
d

 (

h
ig

h
e
r

is
 b

e
tt
e

r)

E
x
e

c
u
ti
o

n
 T

im
e
 i
n

 s
e

c
o
n
d

s

 (
lo

w
e

r
is

 b
e
tt

e
r)

Time Threshold in powers of two bytes

persistent memory model
short-term memory model, lazy

short-term memory model, eager

execution time, persistent
execution time, short-term, lazy

execution time, short-term, eager

Figure 6.10.: ACDC execution time with 95% confidence intervals and allocation
throughput. We compare the persistent memory model and the short-term
memory model for an increasing size of the heap.

The left y-axis shows the allocation throughput for the same ACDC settings. At each

time threshold setting the persistent, the lazy, and the eager short-term memory setup

allocate the same amount of memory. This amount grows with the time threshold

(remember Figures 6.8 and 6.9). We divide the allocated memory by the execution time

to get the allocation throughput in megabytes per second. The red graph is the baseline

showing the throughput for the persistent memory setup. The green and the blue lines

show the throughput of ACDC running on short-term memory using lazy and eager

collection, respectively. We can see that the allocation throughput is nearly the same

for all setups so we can assume that the throughput of LIBSCM scales with the same

rate as malloc and free.

The second throughput experiment changes the number of threads in ACDC. Again, we

measure total execution time and allocated bytes to derive the allocation throughput.

Table 6.7 lists the ACDC settings used for this experiment and Figure 6.11 depicts the

results. On the x-axis we change the number of threads from one to eight. The right

y-axis gives the execution time of ACDC. The persistent memory configuration is the

baseline shown in the pink graph. The execution time grows linearly to the number of

93

6. Experimental Evaluation

Max object lifetime: 10
Benchmark runtime: 200 iterations
Min object size: 23

Max object size: 212

Time threshold: 218

Shared objects: yes
Share ratio: 10%

Table 6.7.: ACDC settings for the throughput evaluation changing the number of threads
from 1 to 8.

threads because the heap size is a linear function of the number of threads, too. Short-

term memory suffers from the execution time overhead of descriptor management. The

black and orange lines show the execution time of the short-term memory configuration

for lazy and eager collection, respectively. Again, there is no notable difference between

the two collection strategies.

The left y-axis presents the allocation throughput of the three configurations. The

red line shows the throughput of the persistent memory configuration. The green and

blue graphs give the throughput for the short-term memory settings in lazy and eager

collection mode. Like in the previous experiment we observe only a small impact on

throughput due to short-term memory. Both short-term memory setups perform com-

petitive to malloc/free for a larger number of threads. Running less than four threads

we can see that the persistent memory configuration yields better throughput results.

6.6. Approximation Overhead

The needed set of objects in ACDC depends on the random lifetime that is assigned to

each of them. The persistent memory configuration is a perfect approximation because

ACDC immediately frees objects after their last use, i.e., the lifetime of the objects has

ended. Running the benchmark tool in short-term memory mode we also have perfect

refreshing information since the lifetime of each object is exactly known. However,

delayed reclamation of the lazy collection strategy will increase the memory consumption

of an application using short-term memory. Also the implicit global time management

will maintain objects longer than necessary to simplify the concurrent reasoning of the

last use of an object.

94

6.6. Approximation Overhead

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 3 4 5 6 7 8
 0

 5

 10

 15

 20

 25

 30

 35

T
h

ro
u

g
h

p
u

t
in

 M
e
g

a
b

y
te

s
/s

e
c
o

n
d

 (

h
ig

h
e
r

is
 b

e
tt
e

r)

E
x
e

c
u
ti
o

n
 T

im
e
 i
n

 s
e

c
o
n
d

s

 (
lo

w
e

r
is

 b
e
tt

e
r)

Number of threads

persistent memory model
short-term memory model, lazy

short-term memory model, eager

execution time, persistent
execution time, short-term, lazy

execution time, short-term, eager

Figure 6.11.: ACDC execution time with 95% confidence intervals and allocation
throughput. We compare the persistent memory model and the short-term
memory model for an increasing number of threads.

In this section we describe an experiment that shows the total memory consumption

of a complete execution of ACDC. The settings of the parameters are shown in Table

6.8. We used only one thread to produce the memory trace to guarantee deterministic

allocation behavior, i.e., every configuration allocates the same objects. Adding more

threads to the system causes a different interleaving of the allocation calls and thereby

a different allocation scheme. ACDC allows the simulation of shared objects even for a

single-threaded setup. We run each trace with the same initial random seed.

Max object lifetime: 10
Benchmark runtime: 100 iterations
Min object size: 23

Max object size: 212

Time threshold: 220

Number of threads: 1
Shared objects: yes
Share ratio: 10%

Table 6.8.: ACDC settings for the comparison of the heap approximations.

95

6. Experimental Evaluation

 0

 1

 2

 3

 4

 5

 6

 7

 10 20 30 40 50 60 70 80 90 100

H
e
a

p
s
iz

e
 i
n
 M

e
g

a
b
y
te

ACDC time

persistent memory model
short-term memoy model, lazy collection

short-term memoy model, eager collection

Figure 6.12.: Memory consumption.

Figure 6.12 shows a memory trace of the ACDC benchmark. On the x-axis we have

the ACDC time, i.e., the number of time advances determined by the time threshold

of ACDC. The y-axis gives the heap size in megabytes. Running ACDC in persistent

memory mode gives the baseline of this experiment which is represented by the red line.

This is a typical allocation pattern of ACDC. The blue dotted line shows the memory

consumption of the short-term memory configuration using the eager collection strategy.

We can observe a slightly higher demand for memory because 10% of the objects are

shared so their expiration extension is set using scm_global_refresh. Remember that

global refreshing adds two extra time units to the expiration date. This delays the

reclamation of 10% of the objects. Note that using only scm_refresh would give the

same pattern as the persistent memory setup.

The green dashed graph shows the memory consumption of the short-term memory setup

using lazy collection. Here, one expired object is reclaimed at each LIBSCM operation.

This results in a significant delay which causes a memory consumption of about twice

the size of the eager collection strategy. However, since time advances in ACDC the size

of the heap is bound.

96

6.7. Summary

6.7. Summary

In this chapter we performed an extensive experimental evaluation of our short-term

memory implementation LIBSCM. We described a workload based on our ACDC bench-

mark suite and identified the factors that have the strongest impact on the execution

time of the LIBSCM operations. For this factors we conducted detailed experiments to

evaluate the performance metrics response time, memory consumption and throughput.

We saw that the performance of LIBSCM mostly depends on the size of the managed

heap. For the eager collection strategy, this was an observation we have already expected

because the tick calls perform linear to size of expired objects. For the lazy collection

strategy however, we expected constant time behavior for all operations. The experi-

ments showed the strong impact of spatial locality on all operations. Still, the runtime

overhead of refresh and tick using lazy collection is small and the comparison to the

persistent memory configuration showed competitive performance.

97

7. Conclusion

In this thesis we have presented the short-term memory model for heap management

and introduced self-collecting mutators, an implementation of short-term memory for

the C programming language. The fundamental difference to the persistent memory

model which is implemented by malloc and free or garbage collection is the way the

application returns not-needed objects to the memory management system. Without

further notice, objects allocated in short-term memory expire after a finite amount of

time and are eventually reclaimed by self-collecting mutators. Objects that belong to the

so-called needed set of objects can be maintained by explicitly extending the expiration

date of this objects. We believe that the reasoning about the needed set of objects is

more intuitive in a concurrent environment than the reasoning about the not-needed set

of objects. We have built a concurrent heap memory management system that is fully

backwards compatible, i.e., it can be used to manage both short-term and persistent

memory objects.

In order to perform an extensive performance evaluation of self-collecting mutators we

have introduced a multi-threaded allocator benchmark tool called ACDC that, in our

opinion, models a representative workload for multi-threaded dynamic memory alloca-

tors. The results show low, constant-time response time of the short-term memory man-

agement operations for setting expiration extensions and advancing time. The overall

throughput is competitive to the persistent memory model implemented in the GLIBC

allocator ptmalloc2.

7.1. Future Work

The implementation of short-term memory presented in this work uses programmer-

controlled clocks to expire objects. C is an important language in the context of embed-

7.1. Future Work

ded and real-time computing and an adoption of LIBSCM to support real-time clocks

offers interesting application scenarios, e.g., using the worst-case execution time (WCET)

of an operation as an upper lifetime bound for dynamic short-term memory objects used

by this operation.

We used the default GLIBC allocator ptmalloc2 because we were primarily interested in

the performance impact of the short-term memory layer on top of the allocator. However,

it might be interesting to compare multiple state-of-the-art allocators to find out if this

factor has an impact on the performance of self-collecting mutators.

The ACDC benchmark tool is a step towards a standard benchmark for multi-threaded

explicit heap management systems. The trend for cloud computing suggests further

research on the characteristics of dynamic heap objects in multi-threaded server systems,

e.g., databases and application servers, in order to further increase the representativeness

of ACDC.

99

Bibliography

[1] Martin Aigner, Andreas Haas, Christoph M. Kirsch, Michael Lippautz, Ana Sokolova,

Stephanie Stroka, and Andreas Unterweger. Short-term memory for self-collecting mu-

tators. In Proceedings of the international symposium on Memory management, ISMM

’11, pages 99–108, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0263-0. doi:

10.1145/1993478.1993493. URL http://doi.acm.org/10.1145/1993478.1993493.

[2] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wilson. Hoard:

a scalable memory allocator for multithreaded applications. SIGPLAN Not., 35(11):117–

128, November 2000. ISSN 0362-1340. doi: 10.1145/356989.357000. URL http://doi.

acm.org/10.1145/356989.357000.

[3] Per-Åke Larson and Murali Krishnan. Memory allocation for long-running server ap-

plications. In Proceedings of the 1st international symposium on Memory management,

ISMM ’98, pages 176–185, New York, NY, USA, 1998. ACM. ISBN 1-58113-114-3. doi:

10.1145/286860.286880. URL http://doi.acm.org/10.1145/286860.286880.

[4] David A. Barrett and Benjamin G. Zorn. Using lifetime predictors to improve mem-

ory allocation performance. In Proceedings of the ACM SIGPLAN 1993 conference

on Programming language design and implementation, PLDI ’93, pages 187–196, New

York, NY, USA, 1993. ACM. ISBN 0-89791-598-4. doi: 10.1145/155090.155108. URL

http://doi.acm.org/10.1145/155090.155108.

[5] Benjamin Zorn and Dirk Grunwald. Empirical measurements of six allocation-intensive c

programs. SIGPLAN Not., 27(12):71–80, December 1992. ISSN 0362-1340. doi: 10.1145/

142181.142200. URL http://doi.acm.org/10.1145/142181.142200.

[6] GLIBC, the GNU C Library, 2012. URL http://www.gnu.org/software/libc.

[7] Free Software Foundation, Inc. The GNU C Reference Manual, 2012. URL http://www.

gnu.org/software/libc/manual.

[8] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall Press, Upper Saddle

River, NJ, USA, 3rd edition, 2007. ISBN 9780136006633.

http://doi.acm.org/10.1145/1993478.1993493
http://doi.acm.org/10.1145/356989.357000
http://doi.acm.org/10.1145/356989.357000
http://doi.acm.org/10.1145/286860.286880
http://doi.acm.org/10.1145/155090.155108
http://doi.acm.org/10.1145/142181.142200
http://www.gnu.org/software/libc
http://www.gnu.org/software/libc/manual
http://www.gnu.org/software/libc/manual

Bibliography

[9] B. W. Kernighan and D. M. Ritchie. The C Programming Language, 2nd edition. Prentice-

Hall, 1988.

[10] brk(2) - Linux man page, 2012. URL http://linux.die.net/man/2/brk.

[11] ISO/IEC 9899:1999, 2011. URL http://www.iso.org/iso/catalogue_detail.htm?

csnumber=29237.

[12] malloc(3) - Linux man page, 2012. URL http://linux.die.net/man/3/malloc.

[13] Emery D. Berger and Benjamin G. Zorn. Diehard: probabilistic memory safety for

unsafe languages. In Proceedings of the 2006 ACM SIGPLAN conference on Pro-

gramming language design and implementation, PLDI ’06, pages 158–168, New York,

NY, USA, 2006. ACM. ISBN 1-59593-320-4. doi: 10.1145/1133981.1134000. URL

http://doi.acm.org/10.1145/1133981.1134000.

[14] Valgrind, 2012. URL http://valgrind.org.

[15] Richard Jones and Rafael Lins. Garbage collection: algorithms for automatic dynamic

memory management. John Wiley & Sons, Inc., New York, NY, USA, 1996. ISBN 0-471-

94148-4.

[16] David F. Bacon, Perry Cheng, and V. T. Rajan. A unified theory of garbage collec-

tion. In Proceedings of the 19th annual ACM SIGPLAN conference on Object-oriented

programming, systems, languages, and applications, OOPSLA ’04, pages 50–68, New

York, NY, USA, 2004. ACM. ISBN 1-58113-831-8. doi: 10.1145/1028976.1028982. URL

http://doi.acm.org/10.1145/1028976.1028982.

[17] John McCarthy. Recursive functions of symbolic expressions and their computation by

machine, part i. Commun. ACM, 3(4):184–195, April 1960. ISSN 0001-0782. doi: 10.

1145/367177.367199. URL http://doi.acm.org/10.1145/367177.367199.

[18] David F. Bacon, Perry Cheng, and V. T. Rajan. A real-time garbage collector with

low overhead and consistent utilization. In Proceedings of the 30th ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, POPL ’03, pages 285–298,

New York, NY, USA, 2003. ACM. ISBN 1-58113-628-5. doi: 10.1145/604131.604155.

URL http://doi.acm.org/10.1145/604131.604155.

[19] Gabriel Kliot, Erez Petrank, and Bjarne Steensgaard. A lock-free, concurrent, and

incremental stack scanning for garbage collectors. In Proceedings of the 2009 ACM

SIGPLAN/SIGOPS international conference on Virtual execution environments, VEE

101

http://linux.die.net/man/2/brk
http://www.iso.org/iso/catalogue_detail.htm?csnumber=29237
http://www.iso.org/iso/catalogue_detail.htm?csnumber=29237
http://linux.die.net/man/3/malloc
http://doi.acm.org/10.1145/1133981.1134000
http://valgrind.org
http://doi.acm.org/10.1145/1028976.1028982
http://doi.acm.org/10.1145/367177.367199
http://doi.acm.org/10.1145/604131.604155

Bibliography

’09, pages 11–20, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-375-4. doi:

10.1145/1508293.1508296. URL http://doi.acm.org/10.1145/1508293.1508296.

[20] Hans-Juergen Boehm and Mark Weiser. Garbage collection in an uncooperative envi-

ronment. Softw. Pract. Exper., 18(9):807–820, September 1988. ISSN 0038-0644. doi:

10.1002/spe.4380180902. URL http://dx.doi.org/10.1002/spe.4380180902.

[21] Hans-J. Boehm and David Chase. A proposal for garbage-collector-safe c compilation,

1992.

[22] ld(1) - Linux man page, 2012. URL http://linux.die.net/man/1/ld.

[23] Ulrich Drepper. How To Write Shared Libraries, 2011. URL http://www.akkadia.org/

drepper/dsohowto.pdf.

[24] M. Aigner, A. Haas, C.M. Kirsch, and A. Sokolova. Short-term Memory for Self-collecting

Mutators - Revised Version. Technical Report 2010-06, Department of Computer Sciences,

University of Salzburg, October 2010.

[25] Gnome Object memory management, 2012. URL http://developer.gnome.org/

gobject/stable/gobject-memory.html.

[26] Mark S. Johnstone and Paul R. Wilson. The memory fragmentation problem: solved?

In Proceedings of the 1st international symposium on Memory management, ISMM ’98,

pages 26–36, New York, NY, USA, 1998. ACM. ISBN 1-58113-114-3. doi: 10.1145/286860.

286864. URL http://doi.acm.org/10.1145/286860.286864.

[27] Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B: Instruction

Set Reference, N-Z, 2012.

[28] Raj Jain. The Art of Computer Systems Performance Analysis: techniques for experi-

mental design, measurement, simulation, and modeling. Wiley, 1991.

[29] OProfile - A System Profiler for Linux, 2012. URL http://oprofile.sourceforge.net.

[30] Ptmalloc2 Source Code, GNU C Library, malloc.c, 2012.

102

http://doi.acm.org/10.1145/1508293.1508296
http://dx.doi.org/10.1002/spe.4380180902
http://linux.die.net/man/1/ld
http://www.akkadia.org/drepper/dsohowto.pdf
http://www.akkadia.org/drepper/dsohowto.pdf
http://developer.gnome.org/gobject/stable/gobject-memory.html
http://developer.gnome.org/gobject/stable/gobject-memory.html
http://doi.acm.org/10.1145/286860.286864
http://oprofile.sourceforge.net

List of Figures

3.1. Logical partitioning of the heap and the approximation of the needed set

by the short-term memory model . 27

3.2. Persistent and short-term objects of a single mutator thread 29

3.3. Refreshing and expiration of short-term objects shared by two threads . 30

4.1. Expiration dates stored in the object header (a) and using descriptors to

represent multiple expiration dates of an object (b) 37

4.2. Layout of the descriptor root, the main thread-local data structure . . . 45

4.3. Layout of the descriptor buffer data structure 46

4.4. Layout of the descriptor page data structure 48

4.5. Layout of the descriptor page list data structure 48

4.6. Layout of the expired descriptor page list data structure 49

5.1. Example lifetime histogram . 62

5.2. Example size-class histogram . 62

5.3. Memory layout of the shared pointer structure. 66

5.4. Memory layout of the shared pointer node structure. 67

5.5. Memory layout of the shared pointer list structure. 68

5.6. Memory layout of the object buffer data structure. Each array element

represents a common lifetime. 68

6.1. Variation of the runtime of the scm refresh call influenced by the combi-

nations of factors A, B, C, D, E. 78

6.2. Variation of the runtime of the scm global refresh call influenced by the

combinations of factors A, B, C, D, E. 79

6.3. Variation of the runtime of the scm tick call influenced by the combina-

tions of factors A, B, C, D, E. 80

List of Figures

6.4. Variation of the runtime of the scm global tick call influenced by the

combinations of factors A, B, C, D, E. 81

6.5. Scalability of LIBSCM for an increasing number of threads using the lazy

collection strategy. The graph shows the arithmetic mean execution time

including a 95% confidence interval in CPU cycles. 84

6.6. Scalabilty of LIBSCM for an increasing number of threads using the eager

collection strategy. The response is the arithmetic mean execution time

of the LIBSCM API calls measured in CPU cycles. 86

6.7. Heap size and number of objects managed by LIBSCM for an increasing

number of threads. 87

6.8. Execution time and memory consumption for an increasing time threshold

using the lazy collection strategy. 89

6.9. Execution time and memory consumption for an increasing time threshold

using the eager collection strategy. 91

6.10. ACDC execution time with 95% confidence intervals and allocation through-

put. We compare the persistent memory model and the short-term mem-

ory model for an increasing size of the heap. 93

6.11. ACDC execution time with 95% confidence intervals and allocation through-

put. We compare the persistent memory model and the short-term mem-

ory model for an increasing number of threads. 95

6.12. Memory consumption. 96

104

Listings

2.1. Example of a C program that uses dynamic memory through the standard

C library. 14

4.1. Definition of scm malloc from stm.h . 39

4.2. Definition of scm free from stm.h . 39

4.3. Definition of scm tick from stm.h . 40

4.4. Definition of scm global tick from stm.h 40

4.5. Definition of scm refresh and scm global refresh from stm.h 43

4.6. Definition of scm block thread and scm resume thread from stm.h 50

4.7. Definition of scm unregister thread from stm.h 51

4.8. Definition of scm register finalizer and scm set finalizer from stm-debug.h 52

6.1. Definition of scm mem info and scm get mem info from stm-debug.h . . 72

src/stm.h . 108

src/scm–desc.h . 111

src/stm–debug.h . 115

src/meter.h . 117

src/arch.h . 118

src/scm–desc.c . 120

src/descriptor page list.c . 131

src/meter.c . 137

src/finalizer.c . 139

src/Makefile–Release.mk . 140

List of Algorithms

1. Top-level view of an ACDC mutator . 58

2. Allocate objects in ACDC . 61

3. Advancing time in ACDC . 63

4. Allocate shared objects in ACDC . 64

Appendix

A. Source Code of LIBSCM

The source code of LIBSCM is published under the GNU General Public license Version

2 and can be downloaded from http://cs.uni-salzburg.at/~maigner/.

A.1. stm.h

1 /∗
2 ∗ Copyright (c) 2010 Martin Aigner , Andreas Haas

3 ∗ h t t p :// cs . uni−s a l z bu r g . at /˜maigner

4 ∗ h t t p :// cs . uni−s a l z bu r g . at /˜ahaas

5 ∗
6 ∗ Univer s i t y Sa lzburg , www. uni−s a l z bu r g . at

7 ∗ Department o f Computer Science , cs . uni−s a l z bu r g . at

8 ∗/
9

10 /∗
11 ∗ This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/or modify

12 ∗ i t under the terms o f the GNU General Pub l i c License as pub l i s h ed by

13 ∗ the Free Software Foundation ; e i t h e r ver s ion 2 o f the License , or

14 ∗ (at your opt ion) any l a t e r ver s ion .

15 ∗
16 ∗ This program i s d i s t r i b u t e d in the hope t ha t i t w i l l be u se fu l ,

17 ∗ but WITHOUT ANY WARRANTY; wi thout even the imp l i ed warranty o f

18 ∗ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

19 ∗ GNU General Pub l i c License f o r more d e t a i l s .

20 ∗
21 ∗ You shou ld have rece i v ed a copy o f the GNU General Pub l i c License

22 ∗ along with t h i s program ; i f not , wr i t e to the Free Software

23 ∗ Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

24 ∗/
25

26 #ifndef STM H

27 #define STM H

28

29 #include <s tdde f . h>

30

31 /∗
32 ∗ one may use the f o l l ow i n g compile time con f i gu ra t i on fo r l i b scm .

http://cs.uni-salzburg.at/~maigner/

A.1. stm.h

33 ∗ See Make f i l e f o r d i f f e r e n t con f i gu ra t i on s

34 ∗
35 ∗ turn on debug messages

36 ∗ #de f ine SCMDEBUG

37 ∗
38 ∗ add thread id to debug messages

39 ∗ #de f ine SCMMTDEBUG

40 ∗
41 ∗ pr in t memory consumption a f t e r memory opera t ions

42 ∗ #de f ine SCMPRINTMEM

43 ∗
44 ∗ pr in t bookkeeping memory oberhead .

45 ∗ works only in add i t i on with SCMPRINTMEM

46 ∗ #de f ine SCMPRINTOVERHEAD

47 ∗
48 ∗ pr in t informat ion i f content ion on l o c k s happened

49 ∗ #de f ine SCM PRINTLOCK

50 ∗
51 ∗ the maximal e xp i r a t i on ex tens ion a l lowed on the scm re f resh c a l l s

52 ∗ #de f ine SCM MAX EXPIRATION EXTENSION 5

53 ∗
54 ∗ the s i z e o f the d e s c r i p t o r pages . t h i s shou ld be a power o f two and a

55 ∗ mu l t i p l e o f s i z e o f (vo id ∗)
56 ∗ #de f ine SCM DESCRIPTOR PAGE SIZE 4096

57 ∗ the SCM DESCRIPTOR PAGE SIZE r e s u l t s in SCM DESCRIPTORS PER PAGE equa l to

58 ∗ ((SCM DESCRIPTOR PAGE SIZE − 2 ∗ s i z e o f (vo id ∗))/ s i z e o f (vo id ∗))
59 ∗
60 ∗ an upper bound on the number o f d e s c r i p t o r pages t ha t are cached

61 ∗ #de f ine SCM DECRIPTOR PAGE FREELIST SIZE 10

62 ∗
63 ∗ pr in t the number o f cpu c y c l e s f o r each pu b l i c func t i on . Make shure to NOT

64 ∗ enab le any other debug op t ions t o g e t h e r with SCMMAKEMICROBENCHMARKS

65 ∗ #de f ine SCMMAKEMICROBENCHMARKS

66 ∗/
67

68 /∗
69 ∗ d e f a u l t c on f i gu ra t i on

70 ∗/
71 #ifndef SCM DESCRIPTOR PAGE SIZE

72 #define SCM DESCRIPTOR PAGE SIZE 4096

73 #endif

74

75 #ifndef SCM MAX EXPIRATION EXTENSION

76 #define SCM MAX EXPIRATION EXTENSION 10

77 #endif

78

79 #ifndef SCM DECRIPTOR PAGE FREELIST SIZE

80 #define SCM DECRIPTOR PAGE FREELIST SIZE 10

81 #endif

82

83 /∗
84 ∗ scm malloc i s used to a l l o c a t e shor t term memory o b j e c t s . This func t i on

85 ∗ can be used at compile time . Unmodified code which uses e . g . g l i b c ’ s

109

A. Source Code of LIBSCM

86 ∗ malloc can be used with l i n k e r opt ion −−wrap mal loc

87 ∗/
88 void ∗ scm malloc (s i z e t s i z e) ;

89

90 /∗
91 ∗ scm free i s used to f r e e shor t term memory o b j e c t s with no d e s c r i p t o r s on

92 ∗ them e . g . permanent o b j e c t s . This func t i on can be used at compile time .

93 ∗ Unmodified code which uses e . g . g l i b c ’ s f r e e can be used with l i n k e r

94 ∗ opt ion −−wrap f r e e

95 ∗/
96 void s cm f ree (void ∗ptr) ;
97

98 /∗
99 ∗ s cm g l o b a l t i c k s i g n a l s t ha t the c a l l i n g thread i s ready to have the g l o b a l

100 ∗ time increased

101 ∗/
102 void s cm g l oba l t i c k (void) ;

103

104 /∗
105 ∗ scm t ick i s used to advance the l o c a l time of the c a l l i n g thread

106 ∗/
107 void scm t i ck (void) ;

108

109 /∗
110 ∗ s cm g l o b a l r e f r e s h adds ex tens ion time un i t s to the e xp i r a t i on time of

111 ∗ p t r and take s care t ha t a l l o ther threads have enough time to a l s o c a l l

112 ∗ g l o b a l r e f r e s h (ptr , ex t ens ion)

113 ∗/
114 void s cm g l ob a l r e f r e s h (void ∗ptr , unsigned int ex tens i on) ;

115

116 /∗
117 ∗ scm re f resh i s the same as s cm g l o b a l r e f r e s h but does not take

118 ∗ care f o r o ther threads .

119 ∗/
120 void s cm re f r e sh (void ∗ptr , unsigned int ex tens i on) ;

121

122 /∗
123 ∗
124 ∗
125 ∗/
126 void s cm r e g i s t e r t h r e ad (void) ;

127

128 /∗
129 ∗ s cm unreg i s t e r t h read may be c a l l e d j u s t b e f o r e a thread terminates .

130 ∗ The thread ’ s data s t r u c t u r e s are preserved f o r a new thread to j o in

131 ∗ the shor t term memory system . Reg i s t r a t i on o f a thread i s done

132 ∗ au tomat i ca l l y when a thread c a l l s ∗ t i c k or ∗ r e f r e s h the f i r s t time .

133 ∗/
134 void s cm unreg i s t e r th r ead (void) ;

135

136 /∗
137 ∗ scm b lock thread may be used to s i g n a l the shor t term memory system tha t

138 ∗ the c a l l i n g thread i s about to l eave the system for a wh i l e e . g . because o f

110

A.2. scm-desc.h

139 ∗ a b l o c k i n g c a l l . During t h i s per iod the system does not wait f o r scm t ick

140 ∗ c a l l s o f t h i s thread .

141 ∗ After the thread f i n i s h e d the b l o c k i n g s t a t e i t re−j o i n s the shor t term

142 ∗ memory system using the scm resume thread c a l l

143 ∗/
144 void scm block thread (void) ;

145 void scm resume thread (void) ;

146

147 /∗
148 ∗ s cm co l l e c t may be c a l l e d at any appropr ia te time in the program . I t

149 ∗ proces se s a l l e xp i red d e s c r i p t o r s o f the c a l l i n g thread and f r e e s o b j e c t s

150 ∗ i f t h e i r d e s c r i p t o r counter becomes zero .

151 ∗/
152 void s cm co l l e c t (void) ;

153

154 #endif /∗ STM H ∗/

A.2. scm-desc.h

1 /∗
2 ∗ Copyright (c) 2010 Martin Aigner , Andreas Haas

3 ∗ h t t p :// cs . uni−s a l z bu r g . at /˜maigner

4 ∗ h t t p :// cs . uni−s a l z bu r g . at /˜ahaas

5 ∗
6 ∗ Univer s i t y Sa lzburg , www. uni−s a l z bu r g . at

7 ∗ Department o f Computer Science , cs . uni−s a l z bu r g . at

8 ∗/
9

10 /∗
11 ∗ This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/or modify

12 ∗ i t under the terms o f the GNU General Pub l i c License as pub l i s h ed by

13 ∗ the Free Software Foundation ; e i t h e r ver s ion 2 o f the License , or

14 ∗ (at your opt ion) any l a t e r ver s ion .

15 ∗
16 ∗ This program i s d i s t r i b u t e d in the hope t ha t i t w i l l be u se fu l ,

17 ∗ but WITHOUT ANY WARRANTY; wi thout even the imp l i ed warranty o f

18 ∗ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

19 ∗ GNU General Pub l i c License f o r more d e t a i l s .

20 ∗
21 ∗ You shou ld have rece i v ed a copy o f the GNU General Pub l i c License

22 ∗ along with t h i s program ; i f not , wr i t e to the Free Software

23 ∗ Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

24 ∗/
25

26 #ifndef SCM DESC H

27 #define SCM DESC H

28

29 #include <s t d l i b . h>

30 #include <pthread . h>

31 #include "stm.h"

32 #include "arch.h"

111

A. Source Code of LIBSCM

33

34 #ifdef SCMMTDEBUG

35 #define p r i n t f p r i n t f ("%lu: " , p t h r e a d s e l f ()) ; p r i n t f

36 #endif

37

38 #ifdef SCMMAKEMICROBENCHMARKS

39 #define MICROBENCHMARKSTART \
40 a l l o c a t o r ov e rh ead = 0 ; \
41 unsigned long long mb start = rd t s c () ;

42 #define MICROBENCHMARKSTOP unsigned long long mb stop = rdt s c () ;

43 #define MICROBENCHMARKDURATION(l o c a t i o n) \
44 p r i n t f ("tid: %lu microbenchmark_at_%s:\t%llu\n" , \
45 p t h r e a d s e l f () , \
46 l o c a t i on , \
47 a l l o c a t o r ov e rh ead == 0 ? \
48 (mb stop− mb start) : \
49 ((mb stop− mb start) − a l l o c a t o r ov e rh ead)) ; \
50 a l l o c a t o r ov e rh ead = 0 ;

51 #define OVERHEADSTART unsigned long long ove rh ead s t a r t = rd t s c () ;

52 #define OVERHEADSTOP \
53 unsigned long long overhead s top = rdt s c () ; \
54 a l l o c a t o r ov e rh ead += (overhead s top − ov e rh ead s t a r t) ;

55

56 #else

57 #define MICROBENCHMARKSTART //NOOP

58 #define MICROBENCHMARKSTOP //NOOP

59 #define MICROBENCHMARKDURATION(l o c a t i o n) //NOOP

60 #define OVERHEADSTART //NOOP

61 #define OVERHEADSTOP //NOOP

62 #endif

63

64 #ifndef SCM DESCRIPTORS PER PAGE

65 #define SCM DESCRIPTORS PER PAGE \
66 ((SCM DESCRIPTOR PAGE SIZE − 2 ∗ s izeof (void ∗)) / s izeof (void ∗))
67 #endif

68

69 extern void ∗ r e a l ma l l o c (s i z e t s i z e) ;

70 extern void ∗ r e a l c a l l o c (s i z e t nelem , s i z e t e l s i z e) ;

71 extern void ∗ r e a l r e a l l o c (void ∗ptr , s i z e t s i z e) ;

72 extern void r e a l f r e e (void ∗ptr) ;
73 extern s i z e t r e a l m a l l o c u s a b l e s i z e (void ∗ptr) ;
74

75 /∗
76 ∗ o b j e c t s a l l o c a t e d us ing l i b scm haven an add i t i o na l o b j e c t header t ha t

77 ∗ i s added be fo r e the chunk returned by the mal loc implemented in the

78 ∗ standard l i b r a r y .

79 ∗
80 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− <− po in t e r to o b j e c t h e a d e r t

81 ∗ | 32 b i t d e s c r i p t o r counter dc |
82 ∗ | 32 b i t f i n a l i z e r index |
83 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− <− po in t e r to the payload data t ha t i s

84 ∗ | payload data | returned to the user

85 ∗ ˜ returned to user ˜

112

A.2. scm-desc.h

86 ∗ | |
87 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
88 ∗
89 ∗/
90 #define OBJECTHEADER(pt r) \
91 (ob j e c t h e ad e r t ∗) (p t r − s izeof (ob j e c t h e ad e r t))

92 #define PAYLOADOFFSET(o) \
93 ((void ∗) (o) + s izeof (ob j e c t h e ad e r t))

94

95 typedef struct d e s c r i p t o r r o o t d e s c r i p t o r r o o t t ;

96 typedef struct ob j e c t heade r ob j e c t h e ad e r t ;

97 typedef struct d e s c r i p t o r p a g e l i s t d e s c r i p t o r p a g e l i s t t ;

98 typedef struct e x p i r e d d e s c r i p t o r p a g e l i s t e x p i r e d d e s c r i p t o r p a g e l i s t t ;

99 typedef struct de s c r i p t o r pag e d e s c r i p t o r p a g e t ;

100 typedef struct d e s c r i p t o r b u f f e r d e s c r i p t o r b u f f e r t ;

101

102 struct ob j e c t heade r {
103 unsigned int dc ; /∗ number o f d e s c r i p t o r s po in t ing here ∗/
104 int f i n a l i z e r i n d e x ; /∗ i d e n t i f i e r o f a f i n a l i z e r func t i on ∗/
105 } ;
106

107 /∗
108 ∗ s i n g l y l i n k ed l i s t o f d e s c r i p t o r pages

109 ∗/
110 struct d e s c r i p t o r p a g e l i s t {
111 d e s c r i p t o r p a g e t ∗ f i r s t ;

112 d e s c r i p t o r p a g e t ∗ l a s t ;

113 } ;
114

115 /∗
116 ∗ s i n g l y l i n k ed l i s t o f exp i red d e s c r i p t o r pages

117 ∗/
118 struct e x p i r e d d e s c r i p t o r p a g e l i s t {
119 d e s c r i p t o r p a g e t ∗ f i r s t ;

120 d e s c r i p t o r p a g e t ∗ l a s t ;

121

122 /∗ index o f the f i r s t d e s c r i p t o r in f i r s t d e s c r i p t o r page . This i s the

123 ∗ de s c r i p t o r t ha t w i l l we processed upon exp i r a t i on ∗/
124 long begin ;

125 } ;
126

127 /∗
128 ∗ s t a t i c a l l y a l l o c a t e memory fo r the l o c a l l y c l ocked d e s c r i p t o r b u f f e r s

129 ∗ s i z e o f the l o c a l l y c l ocked b u f f e r i s SCM MAX EXPIRATION EXTENSION + 1

130 ∗ because o f the add i t i ona l s l o t s f o r

131 ∗ 1 . s l o t f o r the current time

132 ∗
133 ∗ s t a t i c a l l y a l l o c a t e memory fo r the g l o b a l l y c l ocked d e s c r i p t o r b u f f e r s

134 ∗ s i z e o f the g l o b a l l y c l ocked b u f f e r i s SCM MAX EXPIRATION EXTENSION + 3

135 ∗ because o f the add i t i ona l s l o t s f o r

136 ∗ 1 . s l o t f o r the current time

137 ∗ 2 . adding d e s c r i p t o r s at current + increment + 1

138 ∗ 3 . removing d e s c r i p t o r s from current − 1

113

A. Source Code of LIBSCM

139 ∗
140 ∗ Note : both b u f f e r s a l l o c a t e SCM MAX EXPIRATION EXTENSION + 3 s l o t s f o r

141 ∗ p a g e l i s t s but the l o c a l l y c l ocked b u f f e r uses only

142 ∗ SCM MAX EXPIRATION EXTENSION + 1 s l o t s

143 ∗/
144 struct d e s c r i p t o r b u f f e r {
145 /∗ f o r every p o s s i b l e e xp i r a t i on extens ion , there i s an array element

146 ∗ in ” no t e xp i r ed ” tha t conta ins a d e s c r i p t o r page l i s t where the

147 ∗ de s c r i p t o r i s s to red in ∗/
148 d e s c r i p t o r p a g e l i s t t no t exp i r ed [SCM MAX EXPIRATION EXTENSION + 3] ;

149

150 /∗ ” no t e x p i r e d l e n g t h ” g i v e s the l eng t h o f the ” no t e xp i r ed ” array ∗/
151 unsigned int no t exp i r ed l eng th ;

152

153 /∗ ” curren t index ” i s a index to the d e s c r i p t o r p a g e l i s t in

154 ∗ ” no t e xp i r ed ” tha t w i l l e xp i r e a f t e r the next t i c k . ∗/
155 unsigned int cu r r en t index ;

156 } ;
157

158 /∗
159 ∗ A co l l e c t i o n o f data s t r u c t u r e s . Each thread has a po in t e r to

160 ∗ a ” d e s c r i p t o r r o o t ” in a thread−s p e c i f i c data s l o t

161 ∗/
162 struct d e s c r i p t o r r o o t {
163 /∗ ” g l o b a l p ha s e ” i n d i c a t e s i f the thread has a l ready t i c k e d in the ac tua l

164 ∗ g l o b a l phase . A g l o b a l phase i s the i n t e r v a l between two increments o f

165 ∗ the g l o b a l c l o c k

166 ∗
167 ∗ g l o b a l p ha s e == g l o b a l time => thread has not t i c k e d ye t

168 ∗ g l o b a l p ha s e == g l o b a l time +1 => thread has a l ready t i c k e d at l e a s t once

169 ∗/
170 long g l oba l pha s e ;

171

172 e x p i r e d d e s c r i p t o r p a g e l i s t t l i s t o f e x p i r e d d e s c r i p t o r s ;

173

174 /∗ g l o b a l l y c l o c k e d b u f f e r −>cur ren t index i s the thread−g l o b a l time ∗/
175 d e s c r i p t o r b u f f e r t g l o b a l l y c l o c k e d bu f f e r ;

176

177 /∗ l o c a l l y c l o c k e d b u f f e r −>cur ren t index i s the thread−l o c a l time ∗/
178 d e s c r i p t o r b u f f e r t l o c a l l y c l o c k e d b u f f e r ;

179

180 /∗ a poo l o f d e s c r i p t o r pages f o r re−use ∗/
181 d e s c r i p t o r p a g e t ∗ de s c r i p t o r pag e poo l [SCM DECRIPTOR PAGE FREELIST SIZE] ;

182 long number o f poo l ed de s c r i p to r page s ;

183

184 /∗ used to b u i l d a l i s t o f terminated d e s c r i p t o r r o o t s . This i s only

185 ∗ used a f t e r the thread terminated ∗/
186 d e s c r i p t o r r o o t t ∗next ;
187 } ;
188

189 /∗
190 ∗ a chunk o f cont iguous memory tha t ho ld s a s e t o f d e s c r i p t o r s with the same

191 ∗ e xp i r a t i on date .

114

A.3. stm-debug.h

192 ∗/
193 struct de s c r i p t o r pag e {
194 d e s c r i p t o r p a g e t ∗ next ; /∗ used to b u i l d a l i n k ed l i s t ∗/
195 unsigned long number o f de s c r i p to r s ; /∗ u t i l i z a t i o n o f d e s c r i p t o r s [] ∗/
196 ob j e c t h e ad e r t ∗ d e s c r i p t o r s [SCM DESCRIPTORS PER PAGE] ; /∗ memory area ∗/
197 } ;
198

199 d e s c r i p t o r r o o t t ∗ g e t d e s c r i p t o r r o o t (void)

200 a t t r i b u t e ((v i s i b i l i t y ("hidden"))) ;

201

202 int e x p i r e d e s c r i p t o r i f e x i s t s (e x p i r e d d e s c r i p t o r p a g e l i s t t ∗ l i s t)

203 a t t r i b u t e ((v i s i b i l i t y ("hidden"))) ;

204

205 void i n s e r t d e s c r i p t o r (ob j e c t h e ad e r t ∗o ,

206 d e s c r i p t o r b u f f e r t ∗ bu f f e r , unsigned int exp i r a t i on)

207 a t t r i b u t e ((v i s i b i l i t y ("hidden"))) ;

208

209 void e x p i r e b u f f e r (d e s c r i p t o r b u f f e r t ∗ bu f f e r ,

210 e x p i r e d d e s c r i p t o r p a g e l i s t t ∗ e x p l i s t)

211 a t t r i b u t e ((v i s i b i l i t y ("hidden"))) ;

212

213 i n l i n e void i n c r ement cu r r en t index (d e s c r i p t o r b u f f e r t ∗ bu f f e r)
214 a t t r i b u t e ((v i s i b i l i t y ("hidden"))) ;

215

216 int r u n f i n a l i z e r (ob j e c t h e ad e r t ∗o) ;
217

218 #endif /∗ SCM DESC H ∗/

A.3. stm-debug.h

1 /∗
2 ∗ Copyright (c) 2010 Martin Aigner , Andreas Haas

3 ∗ h t t p :// cs . uni−s a l z bu r g . at /˜maigner

4 ∗ h t t p :// cs . uni−s a l z bu r g . at /˜ahaas

5 ∗
6 ∗ Univer s i t y Sa lzburg , www. uni−s a l z bu r g . at

7 ∗ Department o f Computer Science , cs . uni−s a l z bu r g . at

8 ∗/
9

10 /∗
11 ∗ This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/or modify

12 ∗ i t under the terms o f the GNU General Pub l i c License as pub l i s h ed by

13 ∗ the Free Software Foundation ; e i t h e r ver s ion 2 o f the License , or

14 ∗ (at your opt ion) any l a t e r ver s ion .

15 ∗
16 ∗ This program i s d i s t r i b u t e d in the hope t ha t i t w i l l be u se fu l ,

17 ∗ but WITHOUT ANY WARRANTY; wi thout even the imp l i ed warranty o f

18 ∗ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

19 ∗ GNU General Pub l i c License f o r more d e t a i l s .

20 ∗
21 ∗ You shou ld have rece i v ed a copy o f the GNU General Pub l i c License

115

A. Source Code of LIBSCM

22 ∗ along with t h i s program ; i f not , wr i t e to the Free Software

23 ∗ Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

24 ∗/
25

26 #ifndef STM DEBUG H

27 #define STM DEBUG H

28

29 #ifndef SCM FINALZIER TABLE SIZE

30 #define SCM FINALZIER TABLE SIZE 32

31 #endif /∗SCM FINALZIER TABLE SIZE∗/
32

33 #ifdef SCMPRINTMEM

34 #define SCMCALCMEM

35 #endif

36

37 #ifdef SCMPRINTOVERHEAD

38 #define SCMCALCOVERHEAD 1

39 #endif

40

41

42 /∗ s cm r e g i s t e r f i n a l i z e r i s used to r e g i s t e r a f i n a l i z e r func t i on in

43 ∗ l i b scm . A func t ion id i s re turned fo r l a t e r use . (see s cm s e t f i n a l i z e r)

44 ∗
45 ∗ I t i s up to the user to des ign the s cm f i n a l i z e r func t i on . I f

46 ∗ s cm f i n a l i z e r re turns non−zero , the o b j e c t w i l l not be d ea l l o c a t e d .

47 ∗ l i b scm prov ides the po in t e r to the o b j e c t as parameter o f s cm f i n a l i z e r .

48 ∗/
49 int s cm r e g i s t e r f i n a l i z e r (int (∗ s cm f i n a l i z e r) (void ∗)) ;
50

51 /∗
52 ∗ s cm s e t f i n a l i z e r can be used to bind a f i n a l i z e r func t i on id

53 ∗ (re turned by s cm r e g i s t e r f i n a l i z e r) to an o b j e c t (p t r) .

54 ∗ This func t i on w i l l be executed j u s t b e f o r e an exp i red o b j e c t i s

55 ∗ d ea l l o c a t e d .

56 ∗/
57 void s cm s e t f i n a l i z e r (void ∗ptr , int s cm f i n a l i z e r i d) ;

58

59 /∗
60 ∗ s t r u c t scm mem info i s used to f e t c h informat ion about memory

61 ∗ consumption during runtime .

62 ∗/
63 struct scm mem info {
64 unsigned long a l l o c a t e d ; /∗ t o t a l a l l o c a t e d by t e s ∗/
65 unsigned long f r e ed ; /∗ t o t a l f r e ed by t e s ∗/
66 unsigned long overhead ; /∗ overhead by LIBSCM ∗/
67 unsigned long num al loc ; /∗ t o t a l o f a l l o c a t e d ob j . ∗/
68 unsigned long num freed ; /∗ t o t a l o f f r e ed o b j e c t s ∗/
69 } ;
70

71 /∗
72 ∗ scm get mem info i s used to query the content s o f a

73 ∗ s t r u c t scm mem info from LIBSCM

74 ∗/

116

A.4. meter.h

75 void scm get mem info (struct scm mem info ∗ i n f o) ;

76

77 #endif /∗ STM DEBUG H ∗/

A.4. meter.h

1 /∗
2 ∗ Copyright (c) 2010 Martin Aigner , Andreas Haas

3 ∗ h t t p :// cs . uni−s a l z bu r g . at /˜maigner

4 ∗ h t t p :// cs . uni−s a l z bu r g . at /˜ahaas

5 ∗
6 ∗ Univer s i t y Sa lzburg , www. uni−s a l z bu r g . at

7 ∗ Department o f Computer Science , cs . uni−s a l z bu r g . at

8 ∗/
9

10 /∗
11 ∗ This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/or modify

12 ∗ i t under the terms o f the GNU General Pub l i c License as pub l i s h ed by

13 ∗ the Free Software Foundation ; e i t h e r ver s ion 2 o f the License , or

14 ∗ (at your opt ion) any l a t e r ver s ion .

15 ∗
16 ∗ This program i s d i s t r i b u t e d in the hope t ha t i t w i l l be u se fu l ,

17 ∗ but WITHOUT ANY WARRANTY; wi thout even the imp l i ed warranty o f

18 ∗ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

19 ∗ GNU General Pub l i c License f o r more d e t a i l s .

20 ∗
21 ∗ You shou ld have rece i v ed a copy o f the GNU General Pub l i c License

22 ∗ along with t h i s program ; i f not , wr i t e to the Free Software

23 ∗ Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

24 ∗/
25

26 #ifndef METER H

27 #define METER H

28

29 #ifdef SCMCALCOVERHEAD

30 void i nc overhead (long i n c) a t t r i b u t e ((v i s i b i l i t y ("hidden"))) ;

31 void dec overhead (long i n c) a t t r i b u t e ((v i s i b i l i t y ("hidden"))) ;

32 #endif

33

34 #ifdef SCMCALCMEM

35 void inc freed mem (long i n c) a t t r i b u t e ((v i s i b i l i t y ("hidden"))) ;

36 void inc a l located mem (long i n c) a t t r i b u t e ((v i s i b i l i t y ("hidden"))) ;

37 void enable mem meter (void) a t t r i b u t e ((v i s i b i l i t y ("hidden"))) ;

38 void disable mem meter (void) a t t r i b u t e ((v i s i b i l i t y ("hidden"))) ;

39 void print memory consumption (void) a t t r i b u t e ((v i s i b i l i t y ("hidden"))) ;

40 #endif

41

42 #endif /∗ METER H ∗/

117

A. Source Code of LIBSCM

A.5. arch.h

1 /∗
2 ∗ Copyright (c) 2010 Martin Aigner , Andreas Haas

3 ∗ h t t p :// cs . uni−s a l z bu r g . at /˜maigner

4 ∗ h t t p :// cs . uni−s a l z bu r g . at /˜ahaas

5 ∗
6 ∗ Univer s i t y Sa lzburg , www. uni−s a l z bu r g . at

7 ∗ Department o f Computer Science , cs . uni−s a l z bu r g . at

8 ∗/
9

10 /∗
11 ∗ This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/or modify

12 ∗ i t under the terms o f the GNU General Pub l i c License as pub l i s h ed by

13 ∗ the Free Software Foundation ; e i t h e r ver s ion 2 o f the License , or

14 ∗ (at your opt ion) any l a t e r ver s ion .

15 ∗
16 ∗ This program i s d i s t r i b u t e d in the hope t ha t i t w i l l be u se fu l ,

17 ∗ but WITHOUT ANY WARRANTY; wi thout even the imp l i ed warranty o f

18 ∗ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

19 ∗ GNU General Pub l i c License f o r more d e t a i l s .

20 ∗
21 ∗ You shou ld have rece i v ed a copy o f the GNU General Pub l i c License

22 ∗ along with t h i s program ; i f not , wr i t e to the Free Software

23 ∗ Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

24 ∗/
25

26 #ifndef ARCH H

27 #define ARCH H

28

29 #define a t om i c i n t i n c (atomic) (a tomic int add ((atomic) , 1))

30 #define a t om i c i n t d e c and t e s t (atomic) \
31 (atomic int exchange and add ((atomic) , −1) == 1)

32

33 stat ic i n l i n e void t o g g l e b i t a t p o s (int ∗bitmap , int pos) {
34 ∗bitmap = ∗bitmap ˆ (1 << pos) ;

35 }
36

37

38 #i f de f ined i 3 8 6 | | de f ined x8 6 6 4

39

40 stat ic i n l i n e unsigned long long rd t s c (void) {
41 unsigned hi , l o ;

42 asm volat i le ("rdtsc" : "=a" (l o) , "=d" (h i)) ;

43 return ((unsigned long long) l o) | (((unsigned long long) h i) << 32) ;

44 }
45

46 /∗ 32 b i t b i t−map opera t ions ∗/
47

48 /∗ b i t scan forward re turns the index o f the LEAST s i g n i f i c a n t b i t

49 ∗ or −1 i f bitmap==0 ∗/
50 stat ic i n l i n e int b s f l (int bitmap) {
51

118

A.5. arch.h

52 int r e s u l t ;

53

54 asm ("bsfl %1, %0;" /∗ Bit Scan Forward ∗/
55 "jnz 1f;" /∗ i f (ZF==1) i n v a l i d input o f 0 ; jump to 1 : ∗/
56 "movl $-1, %0;" /∗ s e t output to error −1 ∗/
57 "1:" /∗ jump l a b e l f o r l i n e 2 ∗/
58 : "=r" (r e s u l t)

59 : "g" (bitmap)

60) ;

61 return r e s u l t ;

62 }
63

64 /∗ b i t scan reve r s e re turns the index o f the MOST s i g n i f i c a n t b i t

65 ∗ or −1 i f bitmap==0 ∗/
66 stat ic i n l i n e int b s r l (int bitmap) {
67

68 int r e s u l t ;

69

70 asm ("bsrl %1, %0;"

71 "jnz 1f;"

72 "movl $-1, %0;"

73 "1:"

74 : "=r" (r e s u l t)

75 : "g" (bitmap)

76) ;

77 return r e s u l t ;

78 }
79

80 /∗ code adapted from g l i b h t t p :// f t p . gnome . org/pub/gnome/ sources / g l i b /2.24/

81 ∗ g atomic ∗ : atomic opera t ions .

82 ∗ Copyright (C) 2003 Sebas t ian Wilhelmi

83 ∗ Copyright (C) 2007 Nokia Corporation

84 ∗/
85 stat ic i n l i n e int atomic int exchange and add (volat i le int ∗atomic ,

86 int va l) {
87

88 int r e s u l t ;

89

90 asm v o l a t i l e ("lock; xaddl %0,%1"

91 : "=r" (r e s u l t) , "=m" (∗ atomic)

92 : "0" (va l) , "m" (∗ atomic)) ;

93 return r e s u l t ;

94 }
95

96 stat ic i n l i n e void atomic int add (volat i le int ∗atomic , int va l) {
97 asm v o l a t i l e ("lock; addl %1,%0"

98 : "=m" (∗ atomic)

99 : "ir" (va l) , "m" (∗ atomic)) ;

100 }
101

102 stat ic i n l i n e int atomic int compare and exchange (volat i le int ∗atomic ,

103 int o ldva l , int newval) {
104

119

A. Source Code of LIBSCM

105 int r e s u l t ;

106

107 asm v o l a t i l e ("lock; cmpxchgl %2, %1"

108 : "=a" (r e s u l t) , "=m" (∗ atomic)

109 : "r" (newval) , "m" (∗ atomic) , "0" (o ldva l)

110) ;

111

112 return r e s u l t ;

113 }
114

115 #endif /∗ de f ined i 3 8 6 | | de f ined x86 64 ∗/
116

117 #endif /∗ ARCH H ∗/

A.6. scm-desc.c

1 /∗
2 ∗ Copyright (c) 2010 Martin Aigner , Andreas Haas

3 ∗ h t t p :// cs . uni−s a l z bu r g . at /˜maigner

4 ∗ h t t p :// cs . uni−s a l z bu r g . at /˜ahaas

5 ∗
6 ∗ Univer s i t y Sa lzburg , www. uni−s a l z bu r g . at

7 ∗ Department o f Computer Science , cs . uni−s a l z bu r g . at

8 ∗/
9

10 /∗
11 ∗ This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/or modify

12 ∗ i t under the terms o f the GNU General Pub l i c License as pub l i s h ed by

13 ∗ the Free Software Foundation ; e i t h e r ver s ion 2 o f the License , or

14 ∗ (at your opt ion) any l a t e r ver s ion .

15 ∗
16 ∗ This program i s d i s t r i b u t e d in the hope t ha t i t w i l l be u se fu l ,

17 ∗ but WITHOUT ANY WARRANTY; wi thout even the imp l i ed warranty o f

18 ∗ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

19 ∗ GNU General Pub l i c License f o r more d e t a i l s .

20 ∗
21 ∗ You shou ld have rece i v ed a copy o f the GNU General Pub l i c License

22 ∗ along with t h i s program ; i f not , wr i t e to the Free Software

23 ∗ Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

24 ∗/
25

26 #include <s t d i o . h>

27 #include <pthread . h>

28 #include <s t r i n g . h>

29 #include <malloc . h>

30 #include "stm.h"

31 #include "scm -desc.h"

32 #include "stm -debug.h"

33 #include "meter.h"

34 #include "arch.h"

35

120

A.6. scm-desc.c

36 #ifdef SCMMAKEMICROBENCHMARKS

37 // dec l a r e a thread−l o c a l f i e l d to measure the overhead by mal loc and f r e e

38 th r ead unsigned long long a l l o c a t o r ov e rh ead a t t r i b u t e ((a l i gned (64))) = 0 ;

39 #endif

40

41 stat ic long g l oba l t ime = 0 ;

42 stat ic unsigned int number of threads = 0 ;

43

44 // the number o f threads , t ha t have not ye t t i c k e d in a g l o b a l per iod

45 stat ic unsigned int t i cked threads countdown = 1 ;

46

47 // p ro t e c t s g l o ba l t ime , number of threads and t i cked threads countdown

48 stat ic p th r e ad sp i n l o c k t g l o b a l t ime l o c k ;

49

50 stat ic d e s c r i p t o r r o o t t ∗ t e rm ina t ed d e s c r i p t o r r o o t s = NULL;

51

52 // p ro t e c t s the data s t r u c t u r e s o f terminated threads

53 stat ic pthread mutex t t e rm ina t ed de s c r i p t o r r oo t s mutex =

54 PTHREAD MUTEX INITIALIZER;

55

56 // the f i r s t thread j o i n in g l i b scm has to i n i t i a l i z e the thread l o c a l s t o rage

57 stat ic unsigned int i n i t t h r e a d s = 0 ;

58 // s t a t i c p t h r ead k ey t d e s c r i p t o r r o o t k e y ;

59

60 // thread l o c a l r e f e r ence to the d e s c r i p t o r root

61 th r ead d e s c r i p t o r r o o t t ∗ d e s c r i p t o r r o o t ;

62

63

64 stat ic i n l i n e void l o c k g l o b a l t ime () ;

65 stat ic i n l i n e void un l o ck g l oba l t ime () ;

66 stat ic i n l i n e void l o c k d e s c r i p t o r r o o t s () ;

67 stat ic i n l i n e void un l o c k d e s c r i p t o r r o o t s () ;

68 stat ic d e s c r i p t o r r o o t t ∗ new de s c r i p t o r r oo t () ;

69

70 void ∗ wrap mal loc (s i z e t s i z e) ;

71 void ∗ wrap c a l l o c (s i z e t nelem , s i z e t e l s i z e) ;

72 void ∗ wrap r e a l l o c (void ∗ptr , s i z e t s i z e) ;

73 void wrap f r e e (void ∗ptr) ;
74 s i z e t w r ap ma l l o c u s ab l e s i z e (void ∗ptr) ;
75

76 // avoid ELF i n t e r p o s i t i o n o f expor ted but i n t e r n a l l y used symbols

77 //by c r ea t ing s t a t i c a l i a s e s //TODO: check

78 stat ic void s cm re sume thread in t e rna l (void)

79 a t t r i b u t e ((a l i a s ("scm_resume_thread"))) ;

80

81 stat ic void s cm b l o ck th r e ad i n t e rna l (void)

82 a t t r i b u t e ((a l i a s ("scm_block_thread"))) ;

83

84 void s cm f ree (void ∗ptr)
85 a t t r i b u t e ((a l i a s ("__wrap_free"))) ;

86

87 void s cm c o l l e c t i n t e r n a l (void)

88 a t t r i b u t e ((a l i a s ("scm_collect"))) ;

121

A. Source Code of LIBSCM

89

90 void∗ scm malloc (s i z e t s i z e)

91 a t t r i b u t e ((a l i a s ("__wrap_malloc"))) ;

92

93 stat ic void∗ wrap ma l l o c i n t e r na l (s i z e t s i z e)

94 a t t r i b u t e ((a l i a s ("__wrap_malloc"))) ;

95

96 void ∗ wrap mal loc (s i z e t s i z e) {
97 MICROBENCHMARKSTART

98

99 OVERHEADSTART

100 ob j e c t h e ad e r t ∗ ob j e c t =

101 (ob j e c t h e ad e r t ∗) (r e a l ma l l o c (s i z e + s izeof (ob j e c t h e ad e r t))) ;

102 OVERHEADSTOP

103

104 i f (! ob j e c t) {
105 pe r ro r ("malloc") ;

106 MICROBENCHMARKSTOP

107 MICROBENCHMARKDURATION("malloc")

108 return NULL;

109 }
110 object−>dc = 0 ;

111 object−>f i n a l i z e r i n d e x = −1;
112

113 #ifdef SCMCALCOVERHEAD

114 i nc overhead (s izeof (ob j e c t h e ad e r t)) ;

115 #endif

116

117 #ifdef SCMCALCMEM

118 inc a l located mem (r e a l m a l l o c u s a b l e s i z e (ob j e c t)) ;

119 #ifdef SCMPRINTMEM

120 print memory consumption () ;

121 #endif

122 #endif

123

124 void ∗ptr = PAYLOADOFFSET(ob j e c t) ;

125

126 MICROBENCHMARKSTOP

127 MICROBENCHMARKDURATION("malloc")

128

129 return ptr ;

130 }
131

132 void ∗ wrap c a l l o c (s i z e t nelem , s i z e t e l s i z e) {
133

134 void ∗p = wrap ma l l o c i n t e r na l (nelem ∗ e l s i z e) ;

135 // c a l l o c re turns zeroed memory by s p e c i f i c a t i o n

136 memset (p , ’\0’ , nelem ∗ e l s i z e) ;

137 return p ;

138 }
139

140 void ∗ wrap r e a l l o c (void ∗ptr , s i z e t s i z e) {
141 MICROBENCHMARKSTART

122

A.6. scm-desc.c

142

143 i f (ptr == NULL) return wrap ma l l o c i n t e r na l (s i z e) ;

144 // e l s e : c rea t e new ob j e c t

145 OVERHEADSTART

146 ob j e c t h e ad e r t ∗new object =

147 (ob j e c t h e ad e r t ∗) r e a l ma l l o c (s i z e + s izeof (ob j e c t h e ad e r t)) ;

148 OVERHEADSTOP

149

150 i f (! new object) {
151 pe r ro r ("realloc") ;

152 MICROBENCHMARKSTOP

153 MICROBENCHMARKDURATION("realloc")

154 return NULL;

155 }
156 new object−>dc = 0 ;

157 new object−>f i n a l i z e r i n d e x = −1;
158

159 #ifdef SCMCALCOVERHEAD

160 i nc overhead (s izeof (ob j e c t h e ad e r t)) ;

161 #endif

162

163 // ge t the minimum of the o ld s i z e and the new s i z e

164 s i z e t o l d o b j e c t s i z e =

165 r e a l m a l l o c u s a b l e s i z e (OBJECTHEADER(ptr))

166 − s izeof (ob j e c t h e ad e r t) ;

167 s i z e t l e s s e r o b j e c t s i z e ;

168 i f (o l d o b j e c t s i z e >= s i z e) {
169 l e s s e r o b j e c t s i z e = s i z e ;

170 } else {
171 l e s s e r o b j e c t s i z e = o l d o b j e c t s i z e ;

172 }
173

174 ob j e c t h e ad e r t ∗ o l d ob j e c t = OBJECTHEADER(ptr) ;

175 //copy payload by t e s 0 . . (l e s s e r s i z e −1) from the o ld o b j e c t to the new one

176 memcpy(PAYLOADOFFSET(new object) ,

177 PAYLOADOFFSET(o l d ob j e c t) ,

178 l e s s e r o b j e c t s i z e) ;

179

180 i f (o l d ob j e c t−>dc == 0) {
181 // i f the o ld o b j e c t has no de s c r i p t o r s , we can f r e e i t

182 #ifdef SCMCALCMEM

183 inc freed mem (r e a l m a l l o c u s a b l e s i z e (o l d ob j e c t)) ;

184 #endif

185

186 #ifdef SCMCALCOVERHEAD

187 dec overhead (s izeof (ob j e c t h e ad e r t)) ;

188 #endif

189 OVERHEADSTART

190 r e a l f r e e (o l d ob j e c t) ;

191 OVERHEADSTOP

192 } // e l s e : the o ld o b j e c t w i l l be f r e ed l a t e r due to e xp i r a t i on

193

194 #ifdef SCMCALCMEM

123

A. Source Code of LIBSCM

195 inc a l located mem (r e a l m a l l o c u s a b l e s i z e (new object)) ;

196 #ifdef SCMPRINTMEM

197 print memory consumption () ;

198 #endif

199 #endif

200

201 void ∗new ptr = PAYLOADOFFSET(new object) ;

202

203 MICROBENCHMARKSTOP

204 MICROBENCHMARKDURATION("realloc")

205

206 return new ptr ;

207 }
208

209 void wrap f r e e (void ∗ptr) {
210 MICROBENCHMARKSTART

211

212 i f (ptr == NULL) {
213 MICROBENCHMARKSTOP

214 MICROBENCHMARKDURATION("free")

215 return ;

216 }
217

218 ob j e c t h e ad e r t ∗ ob j e c t = OBJECTHEADER(ptr) ;

219

220 i f (object−>dc == 0) {
221 #ifdef SCMCALCOVERHEAD

222 dec overhead (s izeof (ob j e c t h e ad e r t)) ;

223 #endif

224 #ifdef SCMCALCMEM

225 inc freed mem (r e a l m a l l o c u s a b l e s i z e (ob j e c t)) ;

226 #endif

227 OVERHEADSTART

228 r e a l f r e e (ob j e c t) ;

229 OVERHEADSTOP

230 }
231

232 MICROBENCHMARKSTOP

233 MICROBENCHMARKDURATION("free")

234 }
235

236 s i z e t w r ap ma l l o c u s ab l e s i z e (void ∗ptr) {
237 MICROBENCHMARKSTART

238

239 ob j e c t h e ad e r t ∗ ob j e c t = OBJECTHEADER(ptr) ;

240 s i z e t sz = r e a l m a l l o c u s a b l e s i z e (ob j e c t) − s izeof (ob j e c t h e ad e r t) ;

241

242 MICROBENCHMARKSTOP

243 MICROBENCHMARKDURATION("malloc_usable_size")

244 return sz ;

245 }
246

247 void scm t i ck (void) {

124

A.6. scm-desc.c

248 MICROBENCHMARKSTART

249

250 d e s c r i p t o r r o o t t ∗dr = g e t d e s c r i p t o r r o o t () ;

251

252 //make l o c a l time progres s

253 // curren t index i s equa l to the so−c a l l e d thread−l o c a l time

254 i n c r ement cu r r en t index (&dr−>l o c a l l y c l o c k e d b u f f e r) ;

255

256 // e x p i r e b u f f e r opera te s on curren t index − 1 , so i t i s c a l l e d a f t e r

257 //we incremented the cur ren t index o f the l o c a l l y c l o c k e d b u f f e r

258 e x p i r e b u f f e r (&dr−>l o c a l l y c l o c k e d b u f f e r ,

259 &dr−> l i s t o f e x p i r e d d e s c r i p t o r s) ;

260

261

262 #ifndef SCM EAGER COLLECTION

263 //we a l s o process exp i red d e s c r i p t o r s at t i c k

264 // to ge t a c y c l i c a l l o c a t i o n / f r e e scheme . t h i s i s op t i ona l

265 e x p i r e d e s c r i p t o r i f e x i s t s (&dr−> l i s t o f e x p i r e d d e s c r i p t o r s) ;

266 #else

267 s cm c o l l e c t i n t e r n a l () ;

268 #endif

269

270 #ifdef SCMPRINTMEM

271 print memory consumption () ;

272 #endif

273

274 MICROBENCHMARKSTOP

275 MICROBENCHMARKDURATION("scm_tick")

276 }
277

278 void s cm g l oba l t i c k (void) {
279 MICROBENCHMARKSTART

280 d e s c r i p t o r r o o t t ∗dr = g e t d e s c r i p t o r r o o t () ;

281

282 #ifdef SCMDEBUG

283 p r i n t f ("scm_global_tick GT: %lu GP: %lu #T:%d ttc:%d\n" ,

284 g loba l t ime , d e s c r i p t o r r o o t−>g loba l phase ,

285 number of threads , t i cked threads countdown) ;

286 #endif

287

288 i f (g l oba l t ime == dr−>g l oba l pha s e) {
289 //each thread must e xp i r e i t s own g l o b a l l y c l ocked bu f f e r ,

290 // but can only do so on i t s f i r s t t i c k a f t e r the l a s t g l o b a l

291 // time advance

292

293 //my f i r s t t i c k in t h i s g l o b a l per iod

294 dr−>g l oba l pha s e++;

295

296 // curren t index i s equa l to the so−c a l l e d thread−g l o b a l time

297 i n c r ement cu r r en t index (&dr−>g l o b a l l y c l o c k e d bu f f e r) ;

298

299 // e x p i r e b u f f e r opera te s on curren t index − 1 , so i t i s c a l l e d a f t e r

300 //we incremented the cur ren t index o f the g l o b a l l y c l o c k e d b u f f e r

125

A. Source Code of LIBSCM

301 e x p i r e b u f f e r (&dr−>g l o b a l l y c l o c k e d bu f f e r ,

302 &dr−> l i s t o f e x p i r e d d e s c r i p t o r s) ;

303

304 i f (a t om i c i n t d e c and t e s t ((int ∗) & t icked threads countdown)) {
305 // we are the l a s t thread to t i c k in t h i s g l o b a l phase

306

307 l o c k g l o b a l t ime () ;

308

309 // r e s e t the t i cked threads countdown

310 t i cked threads countdown = number of threads ;

311

312 // a s s e r t : d e s c r i p t o r r oo t−>g l o b a l p ha s e == g l o b a l t ime + 1

313 g l oba l t ime++;

314 // p r i n t f (”GLOBAL TIME ADVANCE %lu \n” , g l o b a l t ime) ;

315

316 un l o ck g l oba l t ime () ;

317

318 } // e l s e g l o b a l time does not advance , o ther threads have to do a

319 // g l o b a l t i c k

320

321 } // e l s e : we a l ready t i c k e d in t h i s g l o b a l p ha s e

322 // each thread can only do a g l o b a l t i c k once per g l o b a l phase

323

324

325 #ifndef SCM EAGER COLLECTION

326 //we a l s o process exp i red d e s c r i p t o r s at t i c k

327 // to ge t a c y c l i c a l l o c a t i o n / f r e e scheme . t h i s i s op t i ona l

328 e x p i r e d e s c r i p t o r i f e x i s t s (&dr−> l i s t o f e x p i r e d d e s c r i p t o r s) ;

329 #else

330 s cm c o l l e c t i n t e r n a l () ;

331 #endif

332

333 #ifdef SCMPRINTMEM

334 print memory consumption () ;

335 #endif

336 MICROBENCHMARKSTOP

337 MICROBENCHMARKDURATION("scm_global_tick")

338 }
339

340 void s cm co l l e c t (void) {
341 //MICROBENCHMARKSTART

342

343 d e s c r i p t o r r o o t t ∗dr = g e t d e s c r i p t o r r o o t () ;

344

345 while (e x p i r e d e s c r i p t o r i f e x i s t s (

346 &dr−> l i s t o f e x p i r e d d e s c r i p t o r s)) ;

347

348 //MICROBENCHMARKSTOP

349 //MICROBENCHMARKDURATION(” s cm co l l e c t ”)

350 }
351

352 stat ic i n l i n e unsigned int check ex tens i on (unsigned int g i v en ex t en s i on) {
353 i f (g i v en ex t en s i on > SCM MAX EXPIRATION EXTENSION) {

126

A.6. scm-desc.c

354 #ifdef SCMDEBUG

355 p r i n t f ("violation of SCM_MAX_EXPIRATION_EXTENT\n") ;

356 #endif

357 return SCM MAX EXPIRATION EXTENSION;

358 } else {
359 return g i v en ex t en s i on ;

360 }
361 }
362

363 void s cm g l ob a l r e f r e s h (void ∗ptr , unsigned int ex tens i on) {
364 MICROBENCHMARKSTART

365 #ifdef SCMDEBUG

366 p r i n t f ("scm_global_refresh (%lx, %d)\n" , (unsigned long) ptr , ex t ens i on) ;

367 #endif

368

369 d e s c r i p t o r r o o t t ∗dr = g e t d e s c r i p t o r r o o t () ;

370 ob j e c t h e ad e r t ∗ ob j e c t = OBJECTHEADER(ptr) ;

371

372 ex tens i on = check ex tens i on (extens i on) ;

373

374 a t om i c i n t i n c ((int ∗) & object−>dc) ;

375 i n s e r t d e s c r i p t o r (object ,

376 &dr−>g l o b a l l y c l o c k e d bu f f e r , ex t ens i on + 2) ;

377

378 #ifndef SCM EAGER COLLECTION

379 e x p i r e d e s c r i p t o r i f e x i s t s (&dr−> l i s t o f e x p i r e d d e s c r i p t o r s) ;

380 #else

381 //do nothing . exp i red d e s c r i p t o r s were a l ready c o l l e c t e d at l a s t t i c k

382 #endif

383

384 #ifdef SCMPRINTMEM

385 print memory consumption () ;

386 #endif

387 MICROBENCHMARKSTOP

388 MICROBENCHMARKDURATION("scm_global_refresh")

389 }
390

391 void s cm re f r e sh (void ∗ptr , unsigned int ex tens i on) {
392 MICROBENCHMARKSTART

393 #ifdef SCMDEBUG

394 p r i n t f ("scm_refresh (%lx, %d)\n" , (unsigned long) ptr , ex t ens i on) ;

395 #endif

396

397 d e s c r i p t o r r o o t t ∗dr = g e t d e s c r i p t o r r o o t () ;

398 ob j e c t h e ad e r t ∗ ob j e c t = OBJECTHEADER(ptr) ;

399

400 ex tens i on = check ex tens i on (extens i on) ;

401

402 a t om i c i n t i n c ((int ∗) & object−>dc) ;

403 i n s e r t d e s c r i p t o r (object ,

404 &dr−>l o c a l l y c l o c k e d b u f f e r , ex t ens i on) ;

405

406 #ifndef SCM EAGER COLLECTION

127

A. Source Code of LIBSCM

407 e x p i r e d e s c r i p t o r i f e x i s t s (&dr−> l i s t o f e x p i r e d d e s c r i p t o r s) ;

408 #else

409 //do nothing . exp i red d e s c r i p t o r s were a l ready c o l l e c t e d at l a s t t i c k

410 #endif

411

412 #ifdef SCMPRINTMEM

413 print memory consumption () ;

414 #endif

415 MICROBENCHMARKSTOP

416 MICROBENCHMARKDURATION("scm_refresh")

417 }
418

419 /∗
420 ∗ g e t d e s c r i p t o r r o o t i s c a l l e d by opera t ions t ha t need to access the thread

421 ∗ l o c a l meta data s t r u c t u r e s .

422 ∗/
423 i n l i n e d e s c r i p t o r r o o t t ∗ g e t d e s c r i p t o r r o o t () {
424 // void ∗ p t r = p t h r e a d g e t s p e c i f i c (d e s c r i p t o r r o o t k e y) ;

425 // return (d e s c r i p t o r r o o t t ∗) p t r ;

426 return d e s c r i p t o r r o o t ;

427 }
428

429 /∗
430 ∗ s cm reg i s t e r t h r ead i s c a l l e d on a thread when i t opera tes the f i r s t time

431 ∗ in l i b scm . The thread data s t r u c t u r e s are crea ted or reused from pre v i ou s l y

432 ∗ terminated threads .

433 ∗/
434 void s cm r e g i s t e r t h r e ad () {
435 // d e s c r i p t o r r o o t t ∗ d e s c r i p t o r r o o t ;

436

437 l o c k d e s c r i p t o r r o o t s () ;

438

439 i f (i n i t t h r e a d s == 0) {
440 // i n i t i a l i z e thread l o c a l data key and the g l o b a l t im e l o c k sp in l o c k

441 //when the f i r s t thread i s r e g i s t e r e d

442 // p th r ead key c r ea t e (&de s c r i p t o r r oo t k e y , NULL) ;

443 p t h r e a d s p i n i n i t (&g l oba l t ime l o ck , PTHREAD PROCESS PRIVATE) ;

444 i n i t t h r e a d s = 1 ;

445 }
446

447 i f (t e rm ina t ed d e s c r i p t o r r o o t s != NULL) {
448 d e s c r i p t o r r o o t = t e rm ina t ed d e s c r i p t o r r o o t s ;

449 t e rm ina t ed d e s c r i p t o r r o o t s = t e rm ina t ed de s c r i p t o r r o o t s−>next ;

450 } else {
451 d e s c r i p t o r r o o t = new de s c r i p t o r r oo t () ;

452 }
453

454 un l o c k d e s c r i p t o r r o o t s () ;

455

456 // p t h r e a d s e t s p e c i f i c (d e s c r i p t o r r oo t k e y , d e s c r i p t o r r o o t) ;

457

458 // a s s e r t : i f d e s c r i p t o r r o o t be longed to a terminated thread ,

459 // b l o c k t h r ead was invoked on t h i s thread

128

A.6. scm-desc.c

460 s cm re sume thread in t e rna l () ;

461

462 }
463

464 /∗
465 ∗ s cm unreg i s t e r t h read i s c a l l e d upon terminat ion o f a thread . The thread

466 ∗ l e a v e s the system and passes i t s data s t r u c t u r e s in a poo l to be reused

467 ∗ by other threads upon crea t i on .

468 ∗/
469 void s cm unreg i s t e r th r ead () {
470 MICROBENCHMARKSTART

471

472 s cm b l o ck th r e ad i n t e rna l () ;

473

474 d e s c r i p t o r r o o t t ∗dr = g e t d e s c r i p t o r r o o t () ;

475

476 l o c k d e s c r i p t o r r o o t s () ;

477

478 dr−>next = t e rm ina t ed d e s c r i p t o r r o o t s ;

479 t e rm ina t ed d e s c r i p t o r r o o t s = dr ;

480

481 un l o c k d e s c r i p t o r r o o t s () ;

482

483 MICROBENCHMARKSTOP

484 MICROBENCHMARKDURATION("scm_unregister_thread")

485 }
486

487 /∗
488 ∗ scm b lock thread i s c a l l e d when a thread b l o c k s to no t i f y the system about i t

489 ∗/
490 void scm block thread () {
491 MICROBENCHMARKSTART

492

493 d e s c r i p t o r r o o t t ∗dr = g e t d e s c r i p t o r r o o t () ;

494

495 // a s s e r t : we do not have the d e s c r i p t o r r o o t s l o c k

496 l o c k g l o b a l t ime () ;

497 number of threads−−;
498

499 i f (g l oba l t ime == dr−>g l oba l pha s e) {
500 //we have not t i c k e d in t h i s g l o b a l per iod

501

502 //decrement t i cked threads countdown so other threads don ’ t have to wait

503 i f (a t om i c i n t d e c and t e s t ((int ∗) & t icked threads countdown)) {
504 //we are the l a s t thread to t i c k and t h e r e f o r e need to t i c k g l o b a l l y

505 i f (number of threads == 0) {
506 t i cked threads countdown = 1 ;

507 } else {
508 t i cked threads countdown = number of threads ;

509 }
510 g l oba l t ime++;

511 } else {
512 // there are other threads to t i c k be f o r e g l o b a l time advances

129

A. Source Code of LIBSCM

513 }
514 } else {
515 //we have a l ready t i c k e d g l o b a l l y in t h i s g l o b a l phase .

516 }
517 un l o ck g l oba l t ime () ;

518

519 MICROBENCHMARKSTOP

520 MICROBENCHMARKDURATION("scm_block_thread")

521 }
522

523 /∗
524 ∗ scm resume thread i s c a l l e d when a thread re turns from b l o c k in g s t a t e to

525 ∗ no t i f y the system about i t .

526 ∗/
527 void scm resume thread () {
528 MICROBENCHMARKSTART

529

530 d e s c r i p t o r r o o t t ∗dr = g e t d e s c r i p t o r r o o t () ;

531

532 // a s s e r t : we do not have the d e s c r i p t o r r o o t s l o c k

533 l o c k g l o b a l t ime () ;

534

535 i f (number of threads == 0) {
536 /∗ i f t h i s i s the f i r s t thread to resume/ r e g i s t e r ,

537 ∗ then we have to t i c k to make

538 ∗ g l o b a l progress , un l e s s another thread r e g i s t e r s

539 ∗ a s s e r t : t i cked threads countdown == 1

540 ∗/
541 dr−>g l oba l pha s e = g l oba l t ime ;

542 } else {
543 // e l s e : we do not t i c k g l o b a l l y in the current g l o b a l per iod

544 // to avoid decrement o f the t i cked threads countdown

545 dr−>g l oba l pha s e = g l oba l t ime + 1 ;

546 }
547 number of threads++;

548

549 un l o ck g l oba l t ime () ;

550

551 MICROBENCHMARKSTOP

552 MICROBENCHMARKDURATION("scm_resume_thread")

553 }
554

555 stat ic d e s c r i p t o r r o o t t ∗ new de s c r i p t o r r oo t () {
556

557 // a l l o c a t e d e s c r i p t o r r o o t 0 i n i t i a l i z e d

558 OVERHEADSTART

559 d e s c r i p t o r r o o t t ∗ d e s c r i p t o r r o o t =

560 r e a l c a l l o c (1 , s izeof (d e s c r i p t o r r o o t t)) ;

561 OVERHEADSTOP

562

563 #ifdef SCMCALCOVERHEAD

564 i nc overhead (r e a l m a l l o c u s a b l e s i z e (d e s c r i p t o r r o o t)) ;

565 #endif

130

A.7. descriptor page list.c

566 #ifdef SCMCALCMEM

567 // inc a l located mem (r e a l m a l l o c u s a b l e s i z e (d e s c r i p t o r r o o t)) ;

568 #endif

569

570 de s c r i p t o r r o o t−>g l o b a l l y c l o c k e d bu f f e r . n o t exp i r ed l eng th =

571 SCM MAX EXPIRATION EXTENSION + 3 ;

572 de s c r i p t o r r o o t−>l o c a l l y c l o c k e d b u f f e r . n o t exp i r ed l eng th =

573 SCM MAX EXPIRATION EXTENSION + 1 ;

574

575 return d e s c r i p t o r r o o t ;

576 }
577

578 stat ic i n l i n e void l o c k g l o b a l t ime () {
579 #ifdef SCM PRINTLOCK

580 i f (p th r e ad sp i n t r y l o ck (&g l ob a l t ime l o c k)) {
581 p r i n t f ("thread %ld BLOCKS on global_time_lock\n" , p t h r e a d s e l f ()) ;

582 p th r ead sp i n l o ck (&g l ob a l t ime l o c k) ;

583 }
584 #else

585 p th r ead sp i n l o ck (&g l ob a l t ime l o c k) ;

586 #endif

587 }
588

589 stat ic i n l i n e void un l o ck g l oba l t ime () {
590 pthread sp in un lock (&g l ob a l t ime l o c k) ;

591 }
592

593 stat ic i n l i n e void l o c k d e s c r i p t o r r o o t s () {
594 #ifdef SCM PRINTLOCK

595 i f (pthread mutex try lock (&te rm ina t ed de s c r i p t o r r oo t s mutex)) {
596 p r i n t f ("thread %ld BLOCKS on lock_descriptor_roots\n" , p t h r e a d s e l f ()) ;

597 pthread mutex lock(&te rm ina t ed de s c r i p t o r r oo t s mutex) ;

598 }
599 #else

600 pthread mutex lock(&te rm ina t ed de s c r i p t o r r oo t s mutex) ;

601 #endif

602 }
603

604 stat ic i n l i n e void un l o c k d e s c r i p t o r r o o t s () {
605 pthread mutex unlock(&te rm ina t ed de s c r i p t o r r oo t s mutex) ;

606 }

A.7. descriptor page list.c

1 /∗
2 ∗ Copyright (c) 2010 Martin Aigner , Andreas Haas

3 ∗ h t t p :// cs . uni−s a l z bu r g . at /˜maigner

4 ∗ h t t p :// cs . uni−s a l z bu r g . at /˜ahaas

5 ∗
6 ∗ Univer s i t y Sa lzburg , www. uni−s a l z bu r g . at

7 ∗ Department o f Computer Science , cs . uni−s a l z bu r g . at

131

A. Source Code of LIBSCM

8 ∗/
9

10 /∗
11 ∗ This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/or modify

12 ∗ i t under the terms o f the GNU General Pub l i c License as pub l i s h ed by

13 ∗ the Free Software Foundation ; e i t h e r ver s ion 2 o f the License , or

14 ∗ (at your opt ion) any l a t e r ver s ion .

15 ∗
16 ∗ This program i s d i s t r i b u t e d in the hope t ha t i t w i l l be u se fu l ,

17 ∗ but WITHOUT ANY WARRANTY; wi thout even the imp l i ed warranty o f

18 ∗ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

19 ∗ GNU General Pub l i c License f o r more d e t a i l s .

20 ∗
21 ∗ You shou ld have rece i v ed a copy o f the GNU General Pub l i c License

22 ∗ along with t h i s program ; i f not , wr i t e to the Free Software

23 ∗ Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

24 ∗/
25

26 #include <s t d i o . h>

27 #include <s t d l i b . h>

28 #include <un i s td . h>

29 #include "stm.h"

30 #include "scm -desc.h"

31 #include "meter.h"

32 #include "arch.h"

33

34 #ifdef SCMCALCMEM

35 #include <malloc . h>

36 #endif //SCMCALCMEM

37

38 #ifdef SCMMAKEMICROBENCHMARKS

39 extern th r ead unsigned long long a l l o c a t o r ov e rh ead ;

40 #endif

41

42 stat ic d e s c r i p t o r p a g e t ∗ new desc r ip to r page () ;

43 stat ic i n l i n e void r e c y c l e d e s c r i p t o r p a g e (d e s c r i p t o r p a g e t ∗page) ;
44 stat ic ob j e c t h e ad e r t ∗ g e t e xp i r e d ob j e c t (

45 e x p i r e d d e s c r i p t o r p a g e l i s t t ∗ l i s t) ;

46

47 stat ic d e s c r i p t o r p a g e t ∗ new desc r ip to r page () {
48

49 d e s c r i p t o r r o o t t ∗dr = g e t d e s c r i p t o r r o o t () ;

50 d e s c r i p t o r p a g e t ∗new page = NULL;

51

52 i f (dr−>number o f poo l ed de s c r i p to r page s > 0) {
53 dr−>number o f poo l ed de s c r ip to r page s −−;
54 new page = dr−>de s c r i p t o r pag e poo l

55 [dr−>number o f poo l ed de s c r i p to r page s] ;

56 } else {
57 OVERHEADSTART

58 new page = r e a l ma l l o c (s izeof (d e s c r i p t o r p a g e t)) ;

59 OVERHEADSTOP

60

132

A.7. descriptor page list.c

61 i f (! new page) {
62 pe r ro r ("new_descriptor_page") ;

63 return NULL;

64 }
65

66 #ifdef SCMCALCOVERHEAD

67 i nc overhead (r e a l m a l l o c u s a b l e s i z e (new page)) ;

68 #endif

69 }
70 new page−>number o f de s c r i p to r s = 0 ;

71 new page−>next = NULL;

72 return new page ;

73 }
74

75 stat ic i n l i n e void r e c y c l e d e s c r i p t o r p a g e (d e s c r i p t o r p a g e t ∗page) {
76

77 d e s c r i p t o r r o o t t ∗dr = g e t d e s c r i p t o r r o o t () ;

78

79 i f (dr−>number o f poo l ed de s c r i p to r page s <

80 SCM DECRIPTOR PAGE FREELIST SIZE) {
81 dr−>de s c r i p t o r pag e poo l

82 [dr−>number o f poo l ed de s c r i p to r page s] = page ;

83 dr−>number o f poo l ed de s c r i p to r page s++;

84 } else {
85 #ifdef SCMCALCOVERHEAD

86 dec overhead (r e a l m a l l o c u s a b l e s i z e (page)) ;

87 #endif

88 OVERHEADSTART

89 r e a l f r e e (page) ;

90 OVERHEADSTOP

91 }
92 }
93

94 stat ic ob j e c t h e ad e r t ∗ g e t e xp i r e d ob j e c t (

95 e x p i r e d d e s c r i p t o r p a g e l i s t t ∗ l i s t) {
96

97 //remove from the f i r s t page

98 d e s c r i p t o r p a g e t ∗page = l i s t −> f i r s t ;

99

100 i f (page == NULL) {
101 // l i s t i s empty

102 return NULL;

103 }
104

105 #ifdef SCMDEBUG

106 p r i n t f ("list ->begin: %lu , p->num_of_desc: %lu\n" , l i s t −>begin ,

107 page−>number o f de s c r i p to r s) ;

108 #endif

109

110 i f (l i s t −>begin == page−>number o f de s c r i p to r s) {
111 //page has a l ready been emptied

112 // f r e e t h i s page and proceed with next one at index 0

113 l i s t −>begin = 0 ;

133

A. Source Code of LIBSCM

114

115 i f (l i s t −> f i r s t == l i s t −>l a s t) {
116 // t h i s was the l a s t page in l i s t

117

118 r e c y c l e d e s c r i p t o r p a g e (l i s t −> f i r s t) ;

119

120 l i s t −> f i r s t = NULL;

121 l i s t −>l a s t = NULL;

122

123 return NULL;

124 } else {
125 // there are more pages l e f t . remove empty l i s t −> f i r s t from l i s t

126 page = l i s t −>f i r s t −>next ;

127

128 r e c y c l e d e s c r i p t o r p a g e (l i s t −> f i r s t) ;

129

130 l i s t −> f i r s t = page ;

131 }
132 }
133

134 #ifdef SCMDEBUG

135 i f (l i s t −>begin == page−>number o f de s c r i p to r s) {
136 p r i n t f ("more than one empty page in list\n") ;

137 return NULL;

138 }
139 #endif

140

141 // f e t c h f i r s t d e s c r i p t o r from the non−empty page

142 ob j e c t h e ad e r t ∗ e xp i r e d ob j e c t = page−>d e s c r i p t o r s [l i s t −>begin] ;

143 l i s t −>begin++;

144 return e xp i r e d ob j e c t ;

145 }
146

147 /∗
148 ∗ t h i s func t i on re turns 0 i f f no more exp i red d e s c r i p t o r s e x i s t .

149 ∗/
150 int e x p i r e d e s c r i p t o r i f e x i s t s (e x p i r e d d e s c r i p t o r p a g e l i s t t ∗ l i s t) {
151

152 ob j e c t h e ad e r t ∗ e xp i r e d ob j e c t = g e t e xp i r e d ob j e c t (l i s t) ;

153 i f (e xp i r e d ob j e c t != NULL) {
154

155 //decrement the d e s c r i p t o r counter o f the exp i red o b j e c t

156 i f (a t om i c i n t d e c and t e s t ((int ∗) & exp i r ed ob j e c t−>dc)) {
157

158 // i f the d e s c r i p t o r counter i s now zero , run f i n a l i z e r and f r e e i t

159

160 int f i n a l i z e r r e s u l t = r u n f i n a l i z e r (e xp i r e d ob j e c t) ;

161

162 i f (f i n a l i z e r r e s u l t != 0) {
163 #ifdef SCMDEBUG

164 p r i n t f ("WARNING: finalizer returned %d\n" , f i n a l i z e r r e s u l t) ;

165 p r i n t f ("WARNING: %lx is a leak\n" ,

166 (unsigned long) PAYLOADOFFSET(exp i r e d ob j e c t)) ;

134

A.7. descriptor page list.c

167 #endif

168 return 1 ; //do not f r e e the o b j e c t i f f i n a l i z e r f a i l s

169 }
170

171 #ifdef SCMDEBUG

172 p r i n t f ("FREE(%lx)\n" ,

173 (unsigned long) PAYLOADOFFSET(exp i r e d ob j e c t)) ;

174 #endif

175

176 #ifdef SCMCALCOVERHEAD

177 dec overhead (s izeof (ob j e c t h e ad e r t)) ;

178 #endif

179

180 #ifdef SCMCALCMEM

181 inc freed mem (r e a l m a l l o c u s a b l e s i z e (e xp i r e d ob j e c t)) ;

182 #endif

183 OVERHEADSTART

184 r e a l f r e e (e xp i r e d ob j e c t) ;

185 OVERHEADSTOP

186 return 1 ;

187

188 } else {
189 #ifdef SCMDEBUG

190 p r i n t f ("decrementing DC==%u\n" , e xp i r ed ob j e c t−>dc) ;

191 #endif

192 return 1 ;

193 }
194 } else {
195 #ifdef SCMDEBUG

196 p r i n t f ("no expired object found\n") ;

197 #endif

198 return 0 ;

199 }
200 }
201

202 void i n s e r t d e s c r i p t o r (ob j e c t h e ad e r t ∗ object , d e s c r i p t o r b u f f e r t ∗ bu f f e r ,

203 unsigned int exp i r a t i on) {
204

205 unsigned int i n s e r t i n d e x = (bu f f e r−>cu r r en t index + exp i r a t i on) %

206 bu f f e r−>no t exp i r ed l eng th ;

207

208 d e s c r i p t o r p a g e l i s t t ∗ l i s t = &buf f e r−>not exp i r ed [i n s e r t i n d e x] ;

209

210 i f (l i s t −> f i r s t == NULL) {
211 l i s t −> f i r s t = new desc r ip to r page () ;

212 l i s t −>l a s t = l i s t −> f i r s t ;

213 }
214

215 // i n s e r t in the l a s t page

216 d e s c r i p t o r p a g e t ∗page = l i s t −>l a s t ;

217

218 i f (page−>number o f de s c r i p to r s == SCM DESCRIPTORS PER PAGE) {
219 //page i s f u l l . c r ea t e new page and append to end o f l i s t

135

A. Source Code of LIBSCM

220 page = new desc r ip to r page () ;

221 l i s t −>l a s t−>next = page ;

222 l i s t −>l a s t = page ;

223 }
224

225 page−>d e s c r i p t o r s [page−>number o f de s c r i p to r s] = ob j e c t ;

226 page−>number o f de s c r i p to r s++;

227 }
228

229 /∗
230 ∗ exp i r e b u f f e r opera tes always on the current index−1 l i s t o f the b u f f e r

231 ∗/
232 void e x p i r e b u f f e r (d e s c r i p t o r b u f f e r t ∗ bu f f e r ,

233 e x p i r e d d e s c r i p t o r p a g e l i s t t ∗ e x p l i s t) {
234

235 int t o b e exp i r ed i ndex = buf f e r−>cu r r en t index − 1 ;

236 i f (t o b e exp i r ed i ndex < 0)

237 t o b e exp i r ed i ndex += buf f e r−>no t exp i r ed l eng th ;

238

239 d e s c r i p t o r p a g e l i s t t ∗ j u s t e x p i r e d p a g e l i s t =

240 &buf f e r−>not exp i r ed [t o b e exp i r ed i nd ex] ;

241

242 i f (j u s t e x p i r e d p a g e l i s t −> f i r s t != NULL) {
243

244 i f (j u s t e x p i r e d p a g e l i s t −>f i r s t −>number o f de s c r i p to r s != 0) {
245

246 //append p a g e l i s t to e x p i r e d p a g e l i s t

247 i f (e x p l i s t−> f i r s t == NULL) {
248 e x p l i s t−> f i r s t = j u s t e x p i r e d p a g e l i s t −> f i r s t ;

249 e x p l i s t−>l a s t = j u s t e x p i r e d p a g e l i s t −>l a s t ;

250 e x p l i s t−>begin = 0 ;

251 } else {
252 e x p l i s t−>l a s t−>next = j u s t e x p i r e d p a g e l i s t −> f i r s t ;

253 e x p l i s t−>l a s t = j u s t e x p i r e d p a g e l i s t −>l a s t ;

254 }
255

256 // r e s e t j u s t e x p i r e d p a g e l i s t

257 j u s t e x p i r e d p a g e l i s t −> f i r s t = NULL;

258 j u s t e x p i r e d p a g e l i s t −>l a s t = j u s t e x p i r e d p a g e l i s t −> f i r s t ;

259 } else {
260 // l eave empty j u s t e x p i r e d p a g e l i s t where i t i s

261 }
262 } else {
263 // bu f f e r to exp i r e i s empty

264 }
265 }
266

267 i n l i n e void i n c r ement cu r r en t index (d e s c r i p t o r b u f f e r t ∗ bu f f e r) {
268 bu f f e r−>cu r r en t index = (bu f f e r−>cu r r en t index + 1) %

269 bu f f e r−>no t exp i r ed l eng th ;

270 }

136

A.8. meter.c

A.8. meter.c

1 /∗
2 ∗ Copyright (c) 2010 Martin Aigner , Andreas Haas

3 ∗ h t t p :// cs . uni−s a l z bu r g . at /˜maigner

4 ∗ h t t p :// cs . uni−s a l z bu r g . at /˜ahaas

5 ∗
6 ∗ Univer s i t y Sa lzburg , www. uni−s a l z bu r g . at

7 ∗ Department o f Computer Science , cs . uni−s a l z bu r g . at

8 ∗/
9

10 /∗
11 ∗ This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/or modify

12 ∗ i t under the terms o f the GNU General Pub l i c License as pub l i s h ed by

13 ∗ the Free Software Foundation ; e i t h e r ver s ion 2 o f the License , or

14 ∗ (at your opt ion) any l a t e r ver s ion .

15 ∗
16 ∗ This program i s d i s t r i b u t e d in the hope t ha t i t w i l l be u se fu l ,

17 ∗ but WITHOUT ANY WARRANTY; wi thout even the imp l i ed warranty o f

18 ∗ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

19 ∗ GNU General Pub l i c License f o r more d e t a i l s .

20 ∗
21 ∗ You shou ld have rece i v ed a copy o f the GNU General Pub l i c License

22 ∗ along with t h i s program ; i f not , wr i t e to the Free Software

23 ∗ Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

24 ∗/
25

26 #include <s t d i o . h>

27 #include <malloc . h>

28 #include <sys / time . h>

29 #include "stm.h"

30 #include "stm -debug.h"

31 #include "meter.h"

32

33

34 #ifdef SCMCALCOVERHEAD

35 long mem overhead a t t r i b u t e ((v i s i b i l i t y ("hidden"))) = 0 ;

36

37 void i nc overhead (long i n c) {
38 //mem overhead += inc ;

39 s ync add and f e t ch (&mem overhead , inc) ;

40

41 }
42 void dec overhead (long i n c) {
43 //mem overhead −= inc ;

44 s yn c sub and f e t ch (&mem overhead , inc) ;

45 }
46 #endif

47

48 #ifdef SCMCALCMEM

49 stat ic int mem meter enabled = 1 ;

50 stat ic long s t a r t t ime = 0 ;

51 void enable mem meter () {

137

A. Source Code of LIBSCM

52 mem meter enabled = 1 ;

53 }
54 void disable mem meter () {
55 mem meter enabled = 0 ;

56 }
57

58 stat ic long freed mem = 0 ;

59 stat ic long alloc mem = 0 ;

60 stat ic long num freed = 0 ;

61 stat ic long num al loc = 0 ;

62

63 void inc freed mem (long i n c) {
64 // freed mem += inc ;

65 s ync add and f e t ch (&freed mem , inc) ;

66 s ync add and f e t ch (&num freed , 1) ;

67 }
68 void inc a l located mem (long i n c) {
69 //used mem += inc ;

70 s ync add and f e t ch (&alloc mem , inc) ;

71 s ync add and f e t ch (&num alloc , 1) ;

72 }
73

74 void print memory consumption () {
75

76 struct t imeva l t ;

77 gett imeofday(&t , NULL) ;

78

79 long usec = t . t v s e c ∗ 1000000 + t . tv u s e c ;

80

81 i f (s t a r t t ime == 0) {
82 s t a r t t ime = usec ;

83 }
84

85 struct mal l i n f o i n f o = ma l l i n f o () ;

86

87 i f (mem meter enabled != 0) {
88 p r i n t f ("memusage :\t%lu\t%ld\n" , usec − s t a r t t ime , alloc mem − freed mem) ;

89 p r i n t f ("memoverhead :\t%lu\t%lu\n" , usec − s t a r t t ime , mem overhead) ;

90 p r i n t f ("mallinfo :\t%lu\t%d\n" , usec − s t a r t t ime , i n f o . uordblks) ;

91 }
92 }
93

94 void scm get mem info (struct scm mem info ∗ i n f o) {
95 i n fo−>a l l o c a t e d = alloc mem ;

96 i n fo−>f r e ed = freed mem ;

97 i n fo−>overhead = mem overhead ;

98 i n fo−>num al loc = num al loc ;

99 i n fo−>num freed = num freed ;

100 }
101 #endif //SCMCALCMEM

138

A.9. finalizer.c

A.9. finalizer.c

1 /∗
2 ∗ Copyright (c) 2010 Martin Aigner , Andreas Haas

3 ∗ h t t p :// cs . uni−s a l z bu r g . at /˜maigner

4 ∗ h t t p :// cs . uni−s a l z bu r g . at /˜ahaas

5 ∗
6 ∗ Univer s i t y Sa lzburg , www. uni−s a l z bu r g . at

7 ∗ Department o f Computer Science , cs . uni−s a l z bu r g . at

8 ∗/
9

10 /∗
11 ∗ This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/or modify

12 ∗ i t under the terms o f the GNU General Pub l i c License as pub l i s h ed by

13 ∗ the Free Software Foundation ; e i t h e r ver s ion 2 o f the License , or

14 ∗ (at your opt ion) any l a t e r ver s ion .

15 ∗
16 ∗ This program i s d i s t r i b u t e d in the hope t ha t i t w i l l be u se fu l ,

17 ∗ but WITHOUT ANY WARRANTY; wi thout even the imp l i ed warranty o f

18 ∗ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

19 ∗ GNU General Pub l i c License f o r more d e t a i l s .

20 ∗
21 ∗ You shou ld have rece i v ed a copy o f the GNU General Pub l i c License

22 ∗ along with t h i s program ; i f not , wr i t e to the Free Software

23 ∗ Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA 02111−1307 USA

24 ∗/
25

26 #include "stm -debug.h"

27 #include "arch.h"

28 #include "scm -desc.h"

29

30

31 // f i n a l i z e r t a b l e conta ins 100 func t ion po in t e r s ;

32 stat ic int (∗ f i n a l i z e r t a b l e [SCM FINALZIER TABLE SIZE]) (void ∗) ;
33

34 //bump po in t e r on the f i n a l i z e r t a b l e

35 stat ic int f i n a l i z e r i n d e x = 0 ;

36

37 int s cm r e g i s t e r f i n a l i z e r (int (∗ s cm f i n a l i z e r) (void ∗)) {
38

39 int index = atomic int exchange and add(& f i n a l i z e r i n d e x , 1) ;

40

41 i f (index >= SCM FINALZIER TABLE SIZE) return −1; // error , t a b l e f u l l

42

43 f i n a l i z e r t a b l e [index] = s cm f i n a l i z e r ;

44 return index ;

45 }
46

47 void s cm s e t f i n a l i z e r (void ∗ptr , int s cm f i n a l i z e r i d) {
48 // s e t func t i on index

49 ob j e c t h e ad e r t ∗o = OBJECTHEADER(ptr) ;

50 o−>f i n a l i z e r i n d e x = s cm f i n a l i z e r i d ;

51 }

139

A. Source Code of LIBSCM

52

53

54 int r u n f i n a l i z e r (ob j e c t h e ad e r t ∗o) {
55

56 //INVARIANT: o b j e c t o i s a l ready exp i red

57

58 i f (o−>f i n a l i z e r i n d e x == −1) return 0 ; // o b j e c t has no f i n a l i z e r

59

60 void ∗ptr = PAYLOADOFFSET(o) ;

61 int (∗ f i n a l i z e r) (void ∗) ;
62 // ge t func t i on po in t e r to o b j e c t s f i n a l i z e r

63 f i n a l i z e r = f i n a l i z e r t a b l e [o−>f i n a l i z e r i n d e x] ;

64

65 //run f i n a l i z e r and return the r e s u l t o f i t

66 return (∗ f i n a l i z e r) (ptr) ;

67 }

A.10. Makefile

1

2 CC=gcc

3 OBJECTDIR=bui ld

4 DISTDIR=d i s t

5 WRAPPER=−Wl,−−wrap=malloc −Wl,−−wrap=f r e e −Wl,−−wrap=c a l l o c −Wl,−−wrap=r e a l l o c −Wl,−−
wrap=ma l l o c u s a b l e s i z e

6

7 # for compi le time opt ions uncomment the cor re spond ing l ine

8 # s ee stm . h for a d e s c r i p t i o n o f the opt ions

9

10 # SCM OPTION:=$ (SCM OPTION) −DSCM DESCRIPTOR PAGE SIZE=4096

11 # SCM OPTION:=$ (SCM OPTION) −DSCM DECRIPTOR PAGE FREELIST SIZE=10

12 # SCM OPTION:=$ (SCM OPTION) −DSCM MAX EXPIRATION EXTENSION=10

13 # SCM OPTION:=$ (SCM OPTION) −DSCMDEBUG

14 # SCM OPTION:=$ (SCM OPTION) −DSCMMTDEBUG

15 # SCM OPTION:=$ (SCM OPTION) −DSCMPRINTMEM

16 # SCM OPTION:=$ (SCM OPTION) −DSCMPRINTOVERHEAD

17 # SCM OPTION:=$ (SCM OPTION) −DSCMPRINTLOCK

18 # SCM OPTION:=$ (SCM OPTION) −DSCMMAKEMICROBENCHMARKS

19 # SCM OPTION:=$ (SCM OPTION) −DSCM EAGER COLLECTION

20

21 SOURCEFILES= \
22 stm . h \
23 stm−debug . h \
24 d e s c r i p t o r p a g e l i s t . c \
25 meter . h \
26 meter . c \
27 scm−desc . h \
28 scm−desc . c \
29 arch . h \
30 f i n a l i z e r . c

31

140

A.10. Makefile

32 OBJECTFILES= \
33 $ (OBJECTDIR) / d e s c r i p t o r p a g e l i s t . o \
34 $ (OBJECTDIR) /meter . o \
35 $ (OBJECTDIR) / f i n a l i z e r . o \
36 $ (OBJECTDIR) /scm−desc . o

37

38 LDLIBSOPTIONS=−l p thread
39

40 CFLAGS=$ (SCM OPTION) −O3 −Wall −fPIC

41

42 a l l : l ibscm

43

44 $ (OBJECTDIR) / d e s c r i p t o r p a g e l i s t . o : $ (SOURCEFILES)

45 mkdir −p bu i ld

46 $ (CC) −c $ (CFLAGS) −o $ (OBJECTDIR) / d e s c r i p t o r p a g e l i s t . o d e s c r i p t o r p a g e l i s t .

c

47

48 $ (OBJECTDIR) /meter . o : $ (SOURCEFILES)

49 mkdir −p bu i ld

50 $ (CC) −c $ (CFLAGS) −o $ (OBJECTDIR) /meter . o meter . c

51

52 $ (OBJECTDIR) / f i n a l i z e r . o : $ (SOURCEFILES)

53 mkdir −p bu i ld

54 $ (CC) −c $ (CFLAGS) −o $ (OBJECTDIR) / f i n a l i z e r . o f i n a l i z e r . c

55

56

57 $ (OBJECTDIR) /scm−desc . o : $ (SOURCEFILES)

58 mkdir −p bu i ld

59 $ (CC) −c $ (CFLAGS) −o $ (OBJECTDIR) /scm−desc . o scm−desc . c

60

61

62 l ibscm : $ (OBJECTFILES)

63 mkdir −p d i s t

64 $ (CC) $ (CFLAGS) $ (WRAPPER) −shared −o $ (DISTDIR) / l ibscm . so −fPIC $ (OBJECTFILES)

$ (LDLIBSOPTIONS)

65 cp stm . h d i s t

66 cp stm−debug . h d i s t

67

68 c l ean :

69 rm −r f d i s t

70 rm −r f bu i ld

141

	Introduction
	Contributions
	Outline of the Thesis

	Process Memory Concepts
	Explicit Dynamic Memory Management
	Sources of Errors

	Garbage Collection
	Reference Counting Collectors
	Tracing Collectors
	Comparison of Reference Counting and Tracing Collectors
	Conservative Garbage Collection
	Drawbacks of Garbage Collection

	The Persistent Memory Model
	Summary

	Short-term Memory Model
	Single-threaded Model
	Multi-threaded Model
	Global-Time Management

	Sources of Errors
	Summary

	Self-collecting Mutators in C
	Design Decisions
	Backwards Compatibility
	Representation of Expiration Dates
	Threads
	Allocator

	Operations of Self-collecting Mutators
	Allocation
	Time Progress
	Expiration Extensions

	Data Structures
	Descriptor Root
	Descriptor Buffer
	Descriptor Page
	Descriptor Page List
	Expired Descriptor Page List
	Dynamically Allocated Management Data

	Blocking Threads
	Debug Extensions
	Summary

	ACDC Benchmark
	Characteristics of Dynamic Objects in C Programs
	A Notion of Time for a Mutator
	Modeling the Workload
	ACDC Runtime Options
	Single Mutator Behavior
	Multi Mutator Behavior

	Implementation Details
	Data Structures

	Summary

	Experimental Evaluation
	Prerequisites
	Experimental Setup
	Technical Measurement Details

	Workload Selection
	Services Exercised
	Level of Detail
	Representativeness
	Timeliness

	Experimental Design
	Terminology
	Factors
	Evaluation

	Evaluation of the Important Factors of LIBSCM
	Collection Strategy
	Number of Threads
	Time Threshold

	Throughput of LIBSCM Compared to the Persistent Memory Model
	Approximation Overhead
	Summary

	Conclusion
	Future Work

	Source Code of LIBSCM
	stm.h
	scm-desc.h
	stm-debug.h
	meter.h
	arch.h
	scm-desc.c
	descriptor_page_list.c
	meter.c
	finalizer.c
	Makefile

