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Abstract. We propose a new memory model, short-term memory, and
an algorithm that employs it, called self-collecting mutators. In short-
term memory objects expire after a certain amount of time, which makes
deallocation unnecessary. Self-collecting mutators require programmer
support to control the time and thereby enable reusing the memory of
expired objects. We identify a class of programs for which programmer
support is easy and correctness is guaranteed. We also provide support
for multi-threaded applications. Self-collecting mutators perform com-
petitively with garbage-collected systems, as shown by our experimental
results on several benchmarks. Unlike garbage-collected systems, our sys-
tem has no pause times, provides constant execution time of all memory
operations, independent of number of live objects, and constant memory
consumption after a steady state has been reached.

1 Introduction

Many memory management systems implement one memory model: allocated
memory must be deallocated before it can be reused. For deallocation it is nec-
essary to know which objects are not needed anymore. So to say, deallocation
information is information about dead objects. We call this memory model the
deallocation memory model.

When the programmer provides deallocation information, for example by
explicit deallocation calls, the memory management system is called explicit.
Explicit memory management is known to be error-prone. The two main sources
of errors in explicit memory management, memory leaks and dangling pointers,
both come from incorrect deallocation information. If an object is deallocated
too early, a dangling pointer is created. Deallocating an object too late, i.e.,
when there is no reference to the object anymore, is not possible and results in
a memory leak.

A memory management system which acquires deallocation information by
itself is called an implicit memory management system. Garbage collected mem-
ory management systems are examples of implicit memory management systems.
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They use reachability in the object graph as basis for the deallocation informa-
tion. The complexity of such reachability analysis depends on the number of live
objects, which is in the worst case proportional to the size of the heap.

In this report we propose the use of a complementary memory model which
we call short-term memory. With short-term memory, memory is only allocated
for a certain time span. Afterwards, the memory may be reused without addi-
tional information. If the memory is required longer, it has to be refreshed. This
requires refreshing information, i.e., knowledge of which objects are required
longer. Hence, in contrast to deallocation information, refreshing information is
information about live objects.

Just like deallocation information, refreshing information can be provided
explicitly or gathered implicitly. For example, the reachability analysis provided
by a garbage collector can be used for implicit refreshing. It is interesting to note
that some garbage collectors (tracing) directly provide refreshing information,
whereas others (reference counting) provide deallocation information, c.f. [2].

In this report we focus on explicitly provided refreshing information. Like
explicitly provided deallocation information, explicitly provided refreshing in-
formation can be incorrect. However, the consequences of an incorrect use are
di�erent than in the deallocation memory model. The source of incorrect use of
explicit refreshing is missing refreshing information, resulting in memory being
reused too early and creating a dangling pointer. Other sources of errors in the
deallocation memory model, are avoided in short-term memory:

� Multiple deallocation of the same object is an error in the deallocation mem-
ory model, whereas multiple refreshing has no consequence other than wast-
ing time.

� One can never deallocate unreachable objects (source of memory leaks) in
the explicit deallocation memory model, whereas it is always possible to
refresh reachable objects.

To summarize, correct explicit deallocation information must be �just right",
too much information and too few information is a source of errors. In contrast,
too much explicit refreshing information is still correct. As a consequence, any
over-approximation of the minimal correct refreshing information is also correct.
We believe that even static analysis can provide such an over-approximation.

In this report we show a case study on the e�ort of using short-term mem-
ory explicitly, and we present an explicit implementation of short-term memory,
called self-collecting mutators. With self-collecting mutators, the programmer
has to care about the objects by herself. Therefore it is possible that an object
expires too early. However, for a non-trivial class of programs self-collecting mu-
tators provide correctness, constant memory consumption, time predictability,
and high performance. These properties also hold for multi-threaded applica-
tions.

The report presents the following contributions:

� A new memory model, short-term memory.
� An analysis of the use of short-term memory.
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� An algorithm that employs short-term memory, the self-collecting mutators
algorithm.

� An implementation with support for multi-threaded applications and an im-
plementation analysis.

� A non-trivial well-performing class of programs with correctness guarantees.
� Con�rmation of the analysis with experimental results on several bench-
marks.

The structure of the rest of the report is as follows. In Section 2 we introduce
the concepts of short-term memory. The self-collecting mutators algorithm is
presented in Section 3. Section 4 describes programs which are easy to use and
perform well with self-collecting mutators. In Section 5 we present experimental
results of benchmarks. Section 6 concludes the report and presents future work.

2 Short-term Memory Model

In this section we present the short-term memory model and compare it with
the deallocation memory model. A case study shows how much e�ort it is to use
short-term memory, and we give an overview of possible implementations.

2.1 Concepts

In short-term memory allocated objects do not live forever. Each object is only
allocated for a certain amount of time. After this amount of time the object
expires, which means its existence is not guaranteed anymore. So to say, every
object has an expiration date. An object which has an earlier expiration date
than another object is called older, the other object is called younger.

The notion of time is important for the short-term memory model. It de�nes
the lifetime of every object, which is the time from the allocation of an object
until it expires. If time advances fast, objects will expire faster, and the system
will require less memory. If time stands still, no object will ever expire. This is
equivalent to a system without deallocation. The de�nition of time determines
some core properties of the memory management system.

Object expiration. With absolute knowledge, an object can be allocated with
its exact expiration date. After the expiration date, the object expires. If the
expiration date was correctly determined, then such a strategy does not create
memory errors. Using exact expiration dates resembles explicit memory man-
agement, but may be more di�cult than knowing the position of explicit deal-
location. On the other hand, for explicit deallocation one requires a pointer to
the object, which is not the case here.

Figure 1 presents an example of short-term memory with absolute knowledge
about the expiration of objects. The lifetime of both allocated objects is known
at allocation time. The expiration date can already be set then. For example,
the command allocation(7) allocates an object for 7 time units.
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allocation(7)

allocation(3)

lifetime
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Fig. 1. Allocation with known expiration date.

allocation(1)

lifetime

time
unused

tick

Fig. 2. All objects are allocated for one time unit.

In contrast to using exact expiration dates, without any knowledge, every
object can be allocated for one time unit. Time advances when all existing objects
are not needed anymore. An example for such an implementation can be seen
in Figure 2. All objects have the same expiration date. Even if an object is only
used for a short time, it will not expire until the next time advance.

Between these two extremes, if the expiration date of an object can only be
estimated, then objects can be allocated for the estimated expiration date and
their expiration can later be prolonged by refresh operations. If the program
wants to use an object even after its expiration date, it has to refresh it. The
refreshed object gets a new extended expiration date. Otherwise it expires. When
refreshing is done implicitly, such a system is equivalent to implicit memory
management like garbage collection and requires additional runtime.

allocation(2)

lifetime

time

refresh(3) refresh(2)

Fig. 3. Allocation with estimated expiration date. If the object is needed longer,
it is refreshed.

Figure 3 illustrates refreshing. An object is allocated with an estimated ex-
piration date. If the object is then still needed, it is refreshed. When it is not
refreshed before its expiration date, the object expires. In Figure 3, the object
exists for seven time units in total. Since it was originally allocated for two time
units only, it had to be refreshed for another �ve, which happens with two refresh
statements.

As illustrated in Figure 3, refreshing is used to extend the lifetime of an object
after its allocation. In the deallocation memory model, object deallocation is used
to get the opposite result: to shorten the lifetime of an object. However, when
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all references to an object have been deleted, object deallocation is not possible
anymore. Refreshing, on the other hand, is always possible. The program only
refreshes objects which are intended to be used again. A program has to keep
all objects which it wants to use again reachable anyway. Therefore, the objects
which are to be refreshed are always reachable.

The notion of expiration date in the short-term memory model enables
trading-o� compile-time analysis e�ort, run-time overhead, and memory con-
sumption. Allocation with known expiration date (cf. Figure 1) requires full
compile-time analysis, but least run-time overhead and memory consumption.
Allocation for one time unit (cf. Figure 2) requires only light-weight compile-time
analysis needed for time control, but introduces additional memory consump-
tion. With refreshing (cf. Figure 3), compile-time analysis e�ort remains light-
weight and memory consumption improves at the expense of increased runtime
overhead.

Sources of errors. A memory management system which builds on the short-
term memory model can be used in an incorrect way. Dangling pointers, which
are pointers to objects that do not exist anymore, may be created by missing
refreshing. The target object expires while the pointers to it still exist. As men-
tioned in the introduction, it is possible to over-approximate the set of objects
which have to be refreshed by refreshing every reachable object. This would re-
sult in additional memory consumption, but dangling pointers would not exist
then.

Memory leaks are objects which are not needed anymore but are never deal-
located. With explicit memory management in the deallocation model, a source
of memory leaks is unreachability. With short-term memory, unreachable mem-
ory is simply reused because it cannot be refreshed anymore. However, if, for
example in a mark-sweep garbage collector, all reachable objects are always re-
freshed, reachable memory leaks may be created when a programmer does not
delete references to objects in the leak. When short-term memory is used explic-
itly, both kinds of memory leaks do not exist, if only those objects are refreshed
which are really needed for future use. We present a benchmark where our ex-
plicit implementation of short-term memory repairs a reachable memory leak in
Section 5. Similar handling of memory leaks is described in [13].

If time never advances to the expiration date of an object, then a new type
of memory leak is created. In our implementation the programmer, possibly
supported by static analysis, needs to make sure that time advances. It may also
be possible to use real time instead of programmer-controlled time in which case
there are no memory leaks, at the expense of more di�cult refreshing.

Concurrency. In deallocation memory management systems, it can be di�cult
to place deallocation statements correctly, in particular in the presence of mul-
tiple threads. When several threads use the same object, only the last-accessing
thread can deallocate the object correctly. The di�culty of deallocation comes
from the need of synchronizing deallocation statements among threads.
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In the short-term memory model, every thread refreshes the objects it uses,
just as for single-threaded applications. If more than one thread refreshes an
object, the latest expiration date is used. By using this expiration date, all
threads can use the object correctly. An object has to expire for all threads at
the same time, otherwise an object could expire for one thread although another
thread might still need it. Hence, the di�culty of concurrency support for short-
term memory comes from the need of time synchronization.

We already stated before that memory leaks can be introduced in short-term
memory if time stands still. For multi-threaded applications it is necessary that
the synchronized time also advances if one thread is inactive or blocked. This
is not a problem if real time is used, but it has to be considered for systems in
which time advance depends on the progress of the thread.

Real Time. Many real-time programs use static memory management, in which
all memory is allocated when a program is started. Reasons for this are that it is
di�cult to guarantee the correct use of explicit dynamic memory management,
and implicit deallocation always depends on the number of live objects, either
in time or in space.

Short-term memory can be used for real-time programs. The lifetime of ob-
jects is bounded by their expiration date and therefore the peak memory con-
sumption is bounded too. However, in short-term memory one has to count with
the time overhead of refreshing. In addition, in a multi-threaded setting, redun-
dant refreshes of shared objects may happen since every thread refreshes its own
objects.

Deallocation MM Short-term MM

lifetime of from allocation from allocation
an object until deallocation until expiration

lifetime deallocation refreshing
management

errors dangling pointers, dangling pointers,
memory leaks memory leaks

source of invalid explicit missing refresh,
errors deallocation no time progress

problems with deallocation time
concurrency synchronization synchronization

problems with implicit (redundant)
real time deallocation refresh

Table 1. Comparison of the deallocation memory model with short-term mem-
ory.

Table 1 summarizes the comparison of the deallocation memory model with
the short-term memory model presented in this section.
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2.2 Experiments

What we propose in this report is that short-term memory, which has been used
now implicitly for a long time by garbage collection, can also be used explicitly
and thereby provide interesting properties. The main questions are then: how
easy is it to use short-term memory explicitly, and how many of the required
memory management calls can be added by a static analysis tool?

To answer the �rst question we have to de�ne a programming model which ex-
plicitly uses short-term memory. Most important for such a programming model
is the de�nition of time used for short-term memory. Then we have to de�ne
how object allocation and refreshing work. The answer to the second question
remains future work.

Explicit Programming Model. We use relative time de�ned by the user.
Time is represented by a counter which is incremented by tick-calls called by
the program itself. This implies that the programmer has to put tick-calls at
positions in the program code that are always eventually executed. For multi-
threaded applications time synchronization is done transparently by the system.

Refreshing is done by explicit refresh-calls, which take two parameters, the
object which should be refreshed and the expiration extension. The new expi-
ration date of an object is the current time plus the given expiration extension.
Therefore it makes no di�erence if an object is refreshed once or multiple times
within one time unit. For more convenience we provide a recursive refresh-call
which refreshes the object given as parameter and all objects reachable from it.

benchmark LoC # tick # refresh total # of new LoC

Monte Carlo 1450 1 3 6

JLayer MP3 converter 8247 1 6 9

Table 2. Lines of code of the benchmarks, number of tick-calls, number of
refresh-calls, and total number of lines of code which had to be added to use
short-term memory.

Benchmarks. We translated two Java programs to use our programming model:

1. The Monte Carlo benchmark of the Grande Java Benchmark Suite [11],
2. the JLayer MP3 converter1.

For both benchmarks we added a tick-call at the end of the main loop. In
the Monte Carlo benchmark a result object is generated in every loop iteration
which is stored in a result set. The result set is then processed in the �nalization
phase. This result set requires one recursive refresh-call. A second refresh-call is

1 http://www.javazoom.net/javalayer/javalayer.html
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required to refresh the application root object which is allocated in the main
method and exists during the whole program execution. This object is a local
object which is only reachable from within the main method. We had to make
this object reachable from the code location where refreshing is done, which
resulted in two additional lines of code. A third refresh-call is required on an
object used for time measurements of the benchmark.

For the JLayer MP3 converter we also have to refresh the application root
object. Four other refresh-calls are required for input and output bu�ers, and
another refresh-call is required for a progress listener object.

2.3 Related Work

The short-term memory model can be implemented in many ways, and several
existing memory management systems can be seen as implementations of short-
term memory. In this section we discuss some of these implementations.

In Section 1 we already stated that a garbage collector can refresh all reach-
able objects before they expire. Actually, any tracing garbage collector like a
mark-sweep garbage collector [12] is an implementation of short-term memory.
Time only advances at collection runs, so no objects can expire between two
garbage collection runs. In the marking phase of garbage collection all reach-
able objects are refreshed. At the end of the marking phase time advances. The
following sweep phase then deallocates all expired objects. A copying garbage
collector [4] does not even require a sweep phase.

Another implementation of short-term memory is stack allocation. Memory
which is allocated on the stack is only allocated for a certain amount of time.
It expires when the corresponding function returns. However, stack allocation
does not use a global time for all objects, but every stack frame has its own time
which advances at the end of the function. Refreshing is not generally possible.

Cyclic allocation, as presented in [13], limits the number of objects that are
allocated at the same allocation site and exist at the same time. An allocation
site is a statement in the code which allocates a new object. For example, if the
limit of an allocation site is �ve objects, then the sixth allocation will overwrite
the object that was allocated �rst. Cyclic allocation is an implementation of
short-term memory. Every allocation site has its own local notion of time which
advances at every object allocation. The expiration date of a new object is set
to k if k is the limit of the allocation site. This implies that the object expires
after k further allocations and can then be reused.

The three implementations, tracing garbage collection, stack allocation and
cyclic allocation, are existing implementations of short-term memory. In the next
section we present self-collecting mutators, which is an explicit implementation
of short-term memory. However, one could also think of other implementations
such as the following.

Region-based memory management [15] could be used to implement short-
term memory. For example, one region could contain all objects which would
expire at the same time. For refreshing one would then have to copy an object
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from one region to another region. The region-based approach does not depend
on a speci�c de�nition of time.

In a multi-threaded environment another option is an expiration thread which
scans the heap concurrently to program execution and deallocates all expired ob-
jects that it �nds. This implementation of short-term memory is also orthogonal
to any de�nition of time. The only di�culty is that the expiration thread has to
be able to recognize expired objects.

3 Self-collecting Mutators

In this report we present a new explicit implementation of short-term memory,
called self-collecting mutators. The motivation for this memory management
system was to develop a system with the following properties:

� Competitive performance to systems with garbage collection.
� Constant time complexity for all operations.
� Predictable execution times.
� No read/write barriers.
� No additional threads for memory management.

Note that all these properties focus on temporal performance. Self-collecting
mutators is a memory management system which achieves these goals at the
expense of increased memory consumption.

3.1 Concepts

Self-collecting mutators is an explicit memory management system. The pro-
grammer of an application using self-collecting mutators is responsible for the
correctness of program execution.

Most important for the implementation of short-term memory is the def-
inition of time. The expiration of every object depends on the time model.
Self-collecting mutators use a logical system time. The programmer controls
the logical system time by using a tick operation. Every tick-call increases the
logical system time by one. This is done by a simple constant-time integer in-
crement. Thereby the programmer already knows at compile time how fast time
will advance according to the progress of the application. Other time models are
also possible, see Section 6.

Our design choice for self-collecting mutators is a combination of the design
choices shown in Figure 2 and Figure 3. Every object is allocated for exactly one
time unit and refreshed by an expiration extension if it needs to exist longer.
Lifetime of one time unit su�ces for many allocations. Every object contains a
timestamp in its header, which indicates its expiration date.

The expiration date of an object after refreshing is the current time plus the
expiration extension. Therefore it makes no di�erence if an object is refreshed
once or multiple times, the expiration extensions do not accumulate.
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Memory Reuse. When an object expires, its memory may be reused. A new
object may be allocated in the memory of the expired object. An expiring object
has to be refreshed if it should be guaranteed to exist in the next time unit. In
our system the memory of an object is only reused by objects allocated at the
same allocation site.

Objects which are allocated at the same allocation site are stored in a com-
mon bu�er. When an object is allocated, the memory management system
searches through the bu�er to �nd an expired object which can be overwrit-
ten. If none was found, the bu�er gets extended and the new object is allocated
in the extension. In Section 3.2 we present bu�er implementations which support
fast selection of expired objects and fast insert and delete operations.

Allocation site bu�ers allow constant-time selection because all objects al-
located at the same allocation site have the same size. The same would be the
case if size-class bu�ers would be used. However, allocation site bu�ers have an
important advantage. The lifetimes of objects of the same allocation site are
often similar. Allocation site bu�ers may therefore require less reordering than
size-class bu�ers.

A drawback of the proposed implementation is that memory which is once
allocated by a speci�c allocation site cannot be reused by any other allocation
site. This drawback can be solved in several ways. One could stop the system
and start a compaction run, or one could remove unused objects from a bu�er
and reuse them in a di�erent bu�er. However, we did not implement any of these
improvements because they are orthogonal to our goals. This issue is part of our
future work.

Another drawback of our implementation are allocation sites which allocate
arrays of di�erent size. The memory of an array cannot be easily reused because
the new array may not �t into the memory of the expired array.

There are several possible solutions to this problem. For example, one can
search in the bu�er for an expired array which provides enough space, or, one
creates a separate bu�er for every array size. Resolving the array problem is
another issue for future work. For now, we provide a fast implementation at the
expense of increased memory consumption. If an expired array does not provide
enough memory, we simply remove it from the bu�er and extend the bu�er to
gain memory for the new array. The memory of the expired array could be reused
by a di�erent allocation site but is not in the current implementation since the
underlying allocator does not allow deallocation. In our benchmarks there are
no allocation sites which allocate arrays of di�erent size.

Allocation. Memory allocation consists of three steps:

1. The allocator tries to fetch an expired object from the bu�er of the allocation
site.

2. If an expired object can be found, its memory is used for the new object.
The expired object is then removed from the bu�er. Otherwise new memory
is allocated from free memory.
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3. The new object is initialized. It gets its expiration date, the current logical
system time, and is inserted into the bu�er.

Free memory is handled by a bump pointer. A single pointer indicates the
position where the next object will be allocated. The amount of free memory
only decreases because no memory will ever be returned from a bu�er to free
memory.

Self-collecting mutators can also be based on other allocators, see [9,10,6],
which may be necessary to allow some kind of bu�er shrinking in future work.

The complexity of allocation depends on the bu�er implementation. Our
bu�er implementation is discussed in Section 3.2. All other, bu�er-independent
operations take constant time. In particular, bump pointer allocation requires
only a pointer increment and an expiration date is assigned to an object by a
single statement.

Refresh. Refreshing is the third important operation in our system, after tick
and allocation. It is a three-step operation:

1. The object is removed from its bu�er;
2. It gets a new expiration date; and
3. It is inserted into the bu�er again with its new expiration date.

Refreshing extends the expiration date of a given object. Conceptually, un-
bounded extensions of the expiration date are possible. However, we decided
to limit the maximal expiration extension because this allows better bu�er im-
plementations. The design choices for bu�er implementations are explained in
Section 3.2 in more detail.

Objects can only be overwritten by objects of the same allocation site. There-
fore, only those objects have to be refreshed which are stored in the bu�er of an
allocation site which will be called in the near future. Many programs allocate
permanent data at the beginning of a program. Such data need not be refreshed
if its allocation sites are never called again. Here we exploit a side-e�ect of our
implementation which makes the system more convenient. Permanent objects
could also be handled by repeated refreshing or by introducing an in�nite expi-
ration date. Handling this issue is part of our future work.

Most of the time there is not a single object which has to be refreshed but
a whole data structure. Refreshing can be inconvenient for the programmer if
she has to walk through the object graph recursively by herself. Moreover, the
system can provide a more e�cient version of such a walk-through because it
knows the structure of all objects of the system.

The termination condition has a big in�uence on the performance of the re-
cursion. For example, if the recursive traversion ends at an already refreshed
object, it can happen that not all reachable objects are refreshed. Objects which
have not been refreshed can hide behind objects which have already been re-
freshed by a di�erent refresh call.

A write barrier could prevent such situations. However, this would result in
a signi�cant runtime overhead.
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The object graph can also be traversed twice, the �rst traversion marks all
reachable objects, and the second iteration refreshes all marked objects.

In our implementation we provide both the one-traversion recursion and the
double-traversion recursion. In the benchmarks we only use the one-traversion
recursion because it is not di�cult for a programmer to avoid situations in which
the recursion is incomplete.

Concurrency support. In the following we present the key aspects of our
concurrency support:

Bu�er sharing. All threads allocate in the same bu�ers if they execute the same
allocation site. Threads can refresh and reuse objects allocated by other threads.
A thread cannot reuse the memory of an object as long as another thread keeps
refreshing it. If an object is shared between multiple threads the object will exist
until the last thread stops refreshing it. Afterwards, it may be reused.

We use locks to control bu�er access. Every bu�er has its own lock. A thread
only gets blocked if another thread executes the same allocation site at the same
time.

Thread-local bu�ers could also be used. Then an object may only be reused
by an object allocated at the same allocation site and by the same thread.
However, the access to bu�ers still had to be synchronized because an object
can still be refreshed by di�erent threads.

In our experiments we discovered that allocation site bu�ers are �ne-grained
enough to allow good scalability with locks. However, the memory of a thread
can be reused by a di�erent thread, which results in bad caching performance.
Thread-local bu�ers show better caching performance but require more memory.

Time synchronization. In the concurrency support of self-collecting mutators,
every thread has its own thread-local time. The global time is the lowest thread-
local time, and determines the expiration of objects. A fast thread is forced to
wait for slow threads in order to reuse memory.

4

4

5

4

Thread1

Thread2

tick

global time 

5

4

tick
5

5
tick

6

5

tick

4 4 4 5 5

no time advance

global time advance

Fig. 4. Thread-local and global time advance in multi-threaded applications.
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When the thread-local time of a thread would advance fast, the time dif-
ference to the thread-local time of the slowest thread would increase. However,
in our implementation we bound the time di�erence of di�erent threads. The
thread-local time of a fast thread cannot be later than the thread-local time of
the slowest thread plus one.

The implementation of a tick-call with concurrency support is illustrated in
Figure 4. The �rst tick of Thread1 increases its thread-local time. The next tick
does not change its thread-local time because Thread2 has not yet advanced
time. When Thread2 ticks the global time advances as well. Thereafter, the
thread-local time of Thread1 can increase again. We exploit the bounded di�er-
ence of thread-local times in our bu�er implementation, which is described in
Section 3.2.

4

4

5

4

Thread1

Thread2

tick

global time 

5

4

5

5

4 4 4 5

4 4Thread3 5 5

tick

ticked-threads
counter

0 1 2 0

tick

Fig. 5. The calculation of the global time.

Since the time di�erence of threads is bounded, the global time can be calcu-
lated in constant time at every tick. An example of the algorithm synchronizing
the time of three threads is shown in Figure 5. We count the number of threads
which are faster than the global time. When the number of fast threads is the
same as the total number of threads, the global time advances and the counter is
reset. The time complexity of the time-advance algorithm is constant. At a tick,
a thread has to check if its thread-local time is the same as the global time. If
it is the same, it increases its thread-local time and the ticked-threads counter.
If all threads have ticked, the global time advances and the counter is reset to
zero.

Note that no memory can be reused if the thread-local time of a thread stands
still caused by inactivity or unintended thread behavior. This problem also ap-
pears in barrier implementations for concurrent applications [14]. Timeouts may
be a solution although the objects of the blocking threads must still be handled
somehow. At the moment we do not support threads which block for extended
periods of time.

In the single-threaded version of self-collecting mutators the new expiration
date of an object is the current time of the thread plus the expiration extension.
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In the multi-threaded version, the new expiration date of an object must be set
to the global time plus one plus the expiration extension. The global time plus
one corresponds to the thread-local time of any fast thread and not necessarily to
the thread-local time of the executing thread. Using the global time plus one is
a conservative approximation of object expiration to ensure that shared objects
do not expire prematurely.

3.2 Implementation

We implemented the concepts described above for the programming language
Java. We extended the Jikes Research Virtual Machine [1], version 3.1.0, with
our system, and we use Gnu Classpath2 0.97.2 as class library implementation.

The Jikes RVM is written in Java and uses the same memory management as
the program it executes. Nevertheless, we do not handle the objects allocated by
Jikes with self-collecting mutators. The memory of Jikes objects is never reused.
The reason for this decision is that the memory usage of Jikes is di�cult to port
to self-collecting mutators while keeping its e�ciency. In our benchmarks, Jikes
only allocates objects when a program is started and therefore reusing memory
would not improve its performance.

We provide two additional functions in the interface of the virtual machine:
refresh and tick. The refresh function takes two parameters, a reference to the
object which should be refreshed and the expiration extension. The function tick
has no parameters. For allocation, we modi�ed the original allocation procedures
of Jikes.

Bu�ers. The bu�er implementation is most important for the performance of
self-collecting mutators. It has to provide three operations: insert, select expired,
and delete. A singly-linked list implementation would provide constant-time in-

sert, but select expired and delete would depend on the size of the bu�er. A
doubly-linked list improves delete to constant time, but select expired remains
linear in the size of the list.

When sorting by expiration date is applied to the list, the complexity of se-
lect expired drops to constant time. However, the complexity of insert becomes
linear in the size of the bu�er. By imposing an upper bound on the expira-
tion extension, more e�cient implementations are possible. We present two such
bu�er implementations which exploit the fact of bounded expiration extensions:
insert-pointer bu�ers and segregated bu�ers.

Insert-pointer bu�er. The following observation is the basis for the insert-pointer
bu�er implementation. If n is the bound of the expiration extension, there are
exactly n+1 possible insert positions in the bu�er to keep it sorted. Of these, n
positions are for refreshing and one position is for allocation in the current time
unit. For concurrency support one additional insert position is needed, which we
discuss later.

2 http://www.gnu.org/software/classpath/
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Pointers to these positions are stored in an additional pointer array. When
time advances, the pointer array needs to be updated. However, any insert-
pointer can only get one of the following values: the beginning of the live part
of the bu�er, the value of another existing pointer in the pointer array, or the
end of the bu�er. For the update, we keep a pointer to the beginning of the live
bu�er, that is a pointer to the �rst unexpired object if such exists.

At each time advance objects may expire, which imposes the need of updating
the beginning of the live bu�er. This is done at the �rst insert after time advance.
The new value is one of the existing pointers in the insert-pointer array, or the end
of the bu�er. This update is linear in n. Using a bitmap reduces the complexity
to log n. The new values of the insert pointers can be determined in log n time
as well.

3 5 5 7 7

5 6 7 8
beginning of

live buffer

beginning of buffer end of buffer
sorted

Fig. 6. Insert-pointer bu�er implementation.

Figure 6 illustrates the implementation of an insert-pointer bu�er. The max-
imal expiration extension is three, so the insert-pointer array has four positions.
The current time is 5. There are pointers to the beginning and to the end of the
bu�er, the pointer to the beginning of the live bu�er and the pointer array with
pointers pointing to the insert positions. An insert pointer for a given time value
points to the last object in the bu�er with this expiration date. Objects with
expiration date 6 do not exist in the bu�er and therefore the insert pointer 6 has
no value. However, the correct insert position for new objects with expiration
date 6 is right after the insert position of objects with expiration date 5. After
time advance, at time 6, the beginning of the live bu�er points to the successor
of where pointer 5 points to. In the new time unit, pointer 5 is not needed any
longer for objects with expiration date 5. Instead, the pointer is used for objects
with expiration date 9, which can now be inserted into the bu�er. Hence, the
insert pointers correspond to time units modulo the size of the array.

The complexity of delete is constant time because the data structure is still
a doubly-linked list, and select expired is constant time because of the sorting
(only the beginning of the bu�er needs to be checked). The complexity of insert
is constant time if the insert pointer is set, or linear in the size of the array if
a correct insert position has to be determined. When bitmaps are used to �nd
existing pointers in the array, the worst-case complexity of insert drops to log n.
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Segregated bu�er. The insert-pointer bu�er allows to get the oldest object from
the bu�er. However, this is not necessary. It is enough to �nd any expired object.
This insight is used to get constant-time insert at the cost of logarithmic select

expired in the segregated bu�er implementation.

1 1 5 5

6 6

3 7 7

4
sorted

select-expired array insert-pointer array

5

6

7

8

Fig. 7. Segregated bu�er implementation.

Segregated bu�ers are shown in Figure 7. Here, not all objects are in the
same doubly-linked list, there are n + 1 doubly-linked lists. There exists one list
for every insert position we had in the insert-pointer bu�er before. Segregated
bu�ers use two pointer arrays of size n + 1. The �rst array contains pointers to
the heads of the lists, this is the select-expired array. The second array is the
insert-pointer array which contains pointers to the tails of the lists. Hence, an
object is added at the tail of a list. The correct list for inserting an object with
a given expiration date is determined modulo the size of the array.

Every doubly-linked list is sorted because when an object is inserted to a
list, it is at least as young as the youngest object in the list and it is inserted at
the tail. A list can contain objects with di�erent expiration dates but only its
youngest objects are not expired.

The complexity of insert is constant time because the correct list is deter-
mined by a modulo calculation, and objects are only added at the tail. The delete
operation is again constant time because objects are stored in a doubly-linked
list. The complexity of select expired is linear in n because in the worst case the
head of every list has to be searched for old objects. This complexity again can
be reduced to log n by using a bitmap. The bitmap indicates the bu�ers which
contain expired objects. To select an expired object faster, we store the index of
the list where the last expired object was found. The next search for an expired
object starts at this position.

A di�erent solution could be based on priority queues [5], which already pro-
vide the operations select expired and insert. However, without the restrictions
used by the insert-pointer bu�er and the segregated bu�er it is not possible to
implement a priority queue which provides both select expired and insert with
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a complexity independent on the number of objects in the queue. If it were
possible, then sorting in linear time would also be possible.

insert delete select expired

Singly-linked list O(1) O(m) O(m)

Doubly-linked list O(1) O(1) O(m)

Sorted doubly- O(m) O(1) O(1)
linked list

Insert-pointer bu�er O(log n) O(1) O(1)

Segregated bu�er O(1) O(1) O(log n)

Priority queue O(1) / O(log m) O(1) O(log m) / O(1)

Table 3. Comparison of bu�er implementations. The number of objects in a
bu�er is m, the maximal expiration extension is n.

Table 3 gives an overview of the complexity of the bu�er operations in the
di�erent bu�er implementations.

For the benchmarks we use the segregated bu�er implementation with a
maximal expiration extension of one time unit. Only few objects exist longer
than one time unit, and most objects need not be refreshed since their allocation
sites are never called again. An expiration extension of one time unit already
allows for incremental usage of refresh.

For concurrency support one additional insert position exists in a sorted
bu�er to compensate for the time di�erence between fast and slow threads. The
possible insert positions of the fast thread are shifted by one. Therefore, the size
of the pointer arrays for both the insert-pointer bu�er and the segregated bu�er
has to be extended to n + 2 to support concurrency.

Each doubly-linked list is implemented with a next pointer and a previous
pointer in every object header. For refreshing we have to know in which bu�er
the object is contained. Therefore, the bu�er identi�er is stored in the header of
each object.

Concurrency Support. For the multi-threaded implementation, one has to
�lter threads which cannot do appropriate tick-calls. For example, Jikes initializes
several administrative threads at start-up. Most of the time these threads are
inactive. Therefore, they cannot tick appropriately.

To distinguish application threads from such administrative threads, we let
threads register during which they get their thread-local time. Registration hap-
pens automatically at the �rst memory operation of the thread. At registration,
a thread gets the global time as its thread-local time. A thread is automatically
unregistered upon termination, or it can unregister explicitly. A problem with
thread unregistrations is how to secure its objects. One solution would be that
a thread adds a special tag to its objects so that they cannot be reused. The
thread removes the tag when it is activated again.
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Memory overhead. Our system has the following sources of memory overhead:

� The expiration date and the bu�er identi�er are stored in one word in the
header of every object. When the highest possible global time is reached, the
time wraps around and starts with zero again.

� The next pointer and the previous pointer for the doubly-linked list require
two more words in the object header.

� Every allocation site has one segregated bu�er with a maximal expiration
extension of n. For multi-threading every segregated bu�er consists of n + 2
doubly-linked lists with two words overhead each (for the pointers in the
arrays), and one word for the index of the next bu�er to search. We therefore
have a total overhead of seven words per allocation site in our implementation
(n = 1).

� For time de�nition, we have one word for the global time, one word for the
ticked-thread counter, and one word for the thread-local times.

� For multi-threading, we need one lock per allocation site and one lock for
time synchronization.

Memory consumption of concurrent programs. The memory consumption per
thread in a concurrent program increases if another thread is slower. Neverthe-
less, the memory consumption per thread is bounded by the amount of memory
it can allocate between two ticks of the slowest thread. After a tick of the slowest
thread, fast threads reuse their objects again.

Runtime overhead for arbitrary programs. The runtime overhead of self-
collecting mutators consists of the overhead of tick-calls and the overhead of
refreshing. Since ticking is fast, tick-calls do not introduce much overhead.

There is no upper bound on the number of tick-calls in a program, but there
is a lower bound. Namely, the number of garbage collection runs in a mark-sweep
garbage collector [12] provides the lower bound since otherwise the heap would
be full and nothing could be allocated any more.

When the number of tick-calls increases the memory consumption decreases,
but more refresh-calls are necessary, which implies time overhead. With the num-
ber of tick-calls the programmer can trade-o� time overhead of additional re-
freshing and space overhead of unused memory. We present the e�ect of the
choice of tick frequency in our experiments in Section 5.

Refreshing adds time overhead in every time unit. However, an object is only
refreshed once in a time unit by a single thread. Moreover, in a multi-threaded
setting, we avoid redundant refreshes by checking whether an object was already
refreshed. The complexity of refreshing is therefore bounded by the number of
refreshed objects.

Incrementality. As just discussed, objects only have to be refreshed once each
time unit. However, the exact time of refreshing in a time unit does not matter.
The refresh-calls can be distributed randomly in the time unit. Therefore, �ne-
grained incrementality can be achieved.
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3.3 Related Work

As already stated in the related work of short-term memory, the work presented
in [13] also describes the use of bu�ers per allocation site with the intention
to eliminate memory leaks. There, cyclic bu�ers whose size is determined in
experiments are used. Self-collecting mutators determine bu�er sizes dynami-
cally depending on tick-calls. Moreover, they provide refresh-calls to trade-o�
space consumption caused by sparse tick-calls and time consumption caused by
required refresh-calls.

The memory management system described in [13] maintains type safety as
self-collecting mutators do. Other work which provides memory management
type safety to support the design of non-blocking thread synchronization algo-
rithms is reported on in [8]. In [7] the authors propose the use of type-safe pool
allocation to support program analysis.

Finally, note that the memory behavior of self-collecting mutators can also
be achieved with static preallocation. However, as visible from the benchmarks,
self-collecting mutators is convenient to use and does not dramatically change
the code.

4 Suitable Programs

There exists a class of programs, called suitable programs, which need only few
changes in order to use self-collecting mutators. Moreover, when self-collecting
mutators are used for such programs, the time performance improves, the mem-
ory consumption is constant, and no pause times are introduced by the memory
management system. A su�cient compiler test can be provided to guarantee
correctness, meaning that no dangling pointers are created. We chose our bench-
marks from this class of programs as described in Section 5. To some extend these
properties result from the side e�ect of allocation site bu�ers that the memory
of objects is not reused when their allocation site is not called again.

Any suitable program consists of three phases:

1. Initialization phase;
2. Main loop;
3. Finalization phase.

The program starts with an initialization phase in which permanent data is
allocated. The initialization phase must not share any code with the succeeding
phases. In the main loop the program works on the data created in the initial-
ization phase. In addition, the main loop can allocate any amount of memory.
The �nalization phase, in which the program works on the data generated in the
main loop, is optional.

This basic structure can be extended. All three phases can contain code which
has the same structure. For example, part of the main loop can be code which
has the structure described above, with an inner loop serving as a sub-main loop.

To adapt such a program for using self-collecting mutators, a tick-call has
to be added at the end of the main loop to ensure time advance. When objects
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which are allocated in the main loop do not exist longer than one loop iteration,
no refreshing is required. Objects which have been allocated in the initialization
phase do not have to be refreshed, although they are expired. Their memory
will not be reused anyway. This is the side-e�ect of our implementation already
described in Section 3.2. Only those objects have to be refreshed which are
allocated in the main loop and which should exist longer than one loop iteration.
For best performance, the number of refresh-calls should be low.

Multi-threaded applications are suitable if all threads are suitable. For better
memory e�ciency, the execution time of one iteration of the main loop of each
thread should be similar.

The correctness of a program can be checked by the compiler. A su�cient
test using escape analysis can be provided to check if objects which exist longer
than one loop iteration are refreshed correctly.

The described class of programs also performs well with other memory man-
agement systems like region-based memory management [15]. However, in region-
based memory management it can happen that a single live object keeps a whole
region alive. In such a case, self-collecting mutators would only refresh the single
live object whereas the other objects expire.

5 Experimental Setup and Evaluation

CPU 2x AMD Opteron DualCore, 2.0 GHz

RAM 4GB

OS Linux 2.6.24-16

Java VM Jikes RVM 3.1.0

initial heap size 50MB

Table 4. System con�guration.

We ran the benchmarks on a platform described in Table 4. We used the
production con�guration of Jikes for the measurements of the total runtime.
For the other measurements we used the baseline con�guration without runtime
optimization. The reason is that we want to show the e�ects of the memory
management without side-e�ects of pause times introduced by the optimizer.
We compare self-collecting mutators with a mark-sweep garbage collector and
the standard garbage collector of Jikes, a two-generation copying collector where
the mature space is handled by an Immix collector [3].

We executed two benchmarks explained in Section 2.2, the Monte Carlo
benchmark and the JLayer MP3 converter. Because of the allocation site bu�ers
we were able to reduce the number of refresh-calls. To reduce the number of
refreshes even more in the Monte Carlo benchmark we preallocated the result
set so that no refresh has to be done for it. Table 5 shows the number of alloca-
tion sites and the imposed space overhead for system management. The system
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benchmark LoC total number allocation system
of changed LoC sites overhead

Monte Carlo 1450 10 101 811 words

JLayer MP3 converter 8247 1 312 2499 words

Table 5. Lines of code of the benchmarks, the e�ort of adapting them for
self-collecting mutators, and the space overhead.

overhead only contains the overhead at program startup, but not the overhead
of the object headers. The system overhead consists of 7 words per allocation
site for bu�er handling, plus 1 word per allocation site for the bu�er lock, plus
3 words for the global time, the global time lock, and the ticked-thread counter.
Hence it amounts to 8 words per allocation site plus 3 additional words.

We measured the total runtime of the benchmarks, the latency of the mem-
ory management system, and the memory consumption over time. To test the
runtime properties of the concurrency support we execute both the Monte Carlo
benchmark and the JLayer benchmark in parallel. Moreover, we start four in-
stances of the Monte Carlo benchmark at the same time to show that the shared
use of allocation sites is possible. Finally, we show the overhead of refreshing and
the e�ect of the number of tick-calls on the memory consumption of a program.

5.1 Total runtime

MC leaky MC fixed MP3 4xMC 
fixed

MP3 + 
MC

90.00%

95.00%

100.00%

105.00%

110.00%

115.00%

120.00%

SCM
GEN
MS

Fig. 8. Total runtime of the benchmarks in percent of the runtime of the bench-
mark using self-collecting mutators. The production con�guration of Jikes is
used.

The total runtime of the benchmarks is presented in Figure 8. We executed
the benchmarks ten times and calculated the average of the execution times. The
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original Monte Carlo benchmark has a memory leak which is not collected by
a garbage collector because it is still reachable. Self-collecting mutators (SCM)
reuse the memory objects in the memory leak when they expire. With the mem-
ory leak, self-collecting mutators is 10% faster than the generational garbage
collector (GEN), and 11% faster than the mark-sweep garbage collector (MS).
We also modi�ed the Monte Carlo benchmark and removed the memory leak.
Self-collecting mutators remain (slightly) faster than the garbage-collected sys-
tems in the modi�ed Monte Carlo benchmark. Self-collecting mutators are also
competitive in the execution time of the MP3 converter and the parallel execu-
tion of the MP3 converter and the �xed Monte Carlo benchmark. When four
instances of the Monte Carlo benchmark are executed in parallel, garbage col-
lection is triggered often. This results in a performance drop of the mark-sweep
garbage collector. The garbage collection overhead of the generational garbage
collector is nearly the same as the bu�er management overhead of self-collecting
mutators. Note that in the multi-threaded benchmarks we used 100MB initial
heap size because of the increased memory consumption.

MC leaky MC fixed MP3 4x MC 
fixed

MP3 + 
MC

90.00%

100.00%

110.00%

120.00%

130.00%

140.00%

150.00%

160.00%

SCM
GEN
MS

Fig. 9. Total runtime of the benchmarks in percent of the runtime of the bench-
mark using self-collecting mutators. The baseline con�guration is used.

Figure 9 shows the same benchmarks with the baseline con�guration of Jikes.
The garbage collection algorithms bene�t more from the optimizations than the
self-collecting mutators. The main di�erence is visible in the leaky Monte Carlo
benchmark for the generational garbage collector, and in the multi-threaded
Monte Carlo benchmark for the mark-sweep garbage collector. For the other
benchmarks the results are similar.
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5.2 Pause times and memory consumption

To measure the pause times of the memory management system and the memory
consumption we recorded the loop execution time and the amount of free memory
at the beginning of every loop iteration.
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Fig. 10. Free memory and loop execution time of the �xed Monte Carlo bench-
mark using the baseline con�guration.

Figure 10 shows the free memory and the loop execution time of the �xed
Monte Carlo benchmark. The amount of free memory is constant when the
benchmark is executed with self-collecting mutators, and the loop execution
time is nearly constant. It has a jitter of one millisecond. Both garbage-collected
systems have the same loop execution time as self-collecting mutators except for
the iterations in which garbage collection is triggered. The loop execution time
is much larger then. The free-memory curve of the garbage collected systems
looks like a saw-tooth curve which has a peak after every garbage collection run.
The chart only shows the �rst thousand loop iterations, further iterations show
the same pattern.

The measurements were done with the baseline con�guration because in the
production con�guration of Jikes the virtual machine itself also requires memory.
This can be seen in Figure 11. When the virtual machine only executes the code
of the benchmark the memory consumption is constant, also in the production
con�guration. However, when Jikes runs optimization routines, it allocates mem-
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Fig. 11. Comparison of the free memory of the production con�guration and
the baseline con�guration, for the �xed Monte Carlo benchmark.

ory that cannot be reused since it does not itself use self-collecting mutators. In
the baseline con�guration no optimizations are executed, so the amount of free
memory is constant over the whole execution time.

Next we measure the memory consumption and the loop execution times
of self-collecting mutators of the parallel Monte Carlo benchmark. Figure 12
shows the �rst 20 loop iterations. The values representing free memory for a
thread correspond to the overall free memory measured at the end of a loop
iteration for the considered thread. The memory consumption is constant (also
for all further iterations), but the system requires some loop iterations to �nd
its steady state. Thereafter the bu�ers of all allocation sites are large enough
and no additional memory is needed. The loop execution time still does not vary
much.

At last we analyze the time-space trade-o� controlled by the number of tick-
calls. We started a Monte Carlo benchmark which does not preallocate the result
set and compared it with the benchmark which does preallocation. The loop ex-
ecution times are shown in Figure 13, the free memory over time is visualized
in Figure 14. With preallocation (and tick at every loop iteration) we get the
best memory consumption at the end of the benchmark execution and the lowest
loop execution time. Without preallocation all result objects have to be refreshed
in every time unit. For the measurements we considered three scenarios: tick at
every loop iteration, tick at every 50th loop iteration and tick at every 200th iter-
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Fig. 12. Free memory and loop execution time of the parallel Monte Carlo bench-
mark using the baseline con�guration.
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frequencies. The baseline con�guration is used.
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Fig. 14. Free memory of the Monte Carlo benchmark with di�erent tick frequen-
cies. The baseline con�guration is used.

ation. We distributed the required refresh-calls uniformly over all time units. As
a result, the loop execution time has only small variance. The results show that
the more ticks, and thus more refreshing, the longer the loop execution time.
However, with less ticks the memory consumption increases. When a tick-call
is executed only every 200th loop iteration, the memory consumption is max-
imal, but the performance is nearly as good as the performance of the system
with preallocation. In the last iterations the number of allocated objects is large
and therefore exactly �fty refresh-calls are executed per iteration. This explains
the slight increase in the loop execution time. The memory consumption of the
benchmarks without preallocation increases as time elapses since a new result
object is allocated in every loop iteration. After the last iteration the memory
consumption of the Monte Carlo benchmark with preallocation and the Monte
Carlo benchmark with a tick-call at every loop iteration is the same. The exe-
cution which ticks only once every 200th loop iteration needs nearly the whole
heap.

6 Conclusion and Future Work

We proposed the short-term memory model and a memory management system
that uses it, self-collecting mutators. In short-term memory objects are allocated
with an expiration date. Self-collecting mutators achieve constant-time memory
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operations. Moreover, the memory consumption becomes constant after an initial
period of time. The self-collecting mutators algorithm also provides concurrency
support. We present benchmarks that con�rm the properties of self-collecting
mutators.

We identi�ed a class of programs for which programmer support is easy and
correctness is guaranteed. In one of the benchmarks we only had to insert one line
of code to start it with self-collecting mutators. For this class of programs, using
self-collecting mutators is almost as easy as programming in a garbage-collected
system, yet with decreased runtime overhead and improved predictability.

As future work we aim at providing a program analysis tool which helps the
programmer to write correct and e�cient programs for self-collecting mutators.
Other issues are the implementation of bu�er shrinking so that unused mem-
ory can be shifted between bu�ers of di�erent allocation sites. As discussed in
the introduction of short-term memory, the key of using short-term memory for
multi-threaded applications is time synchronization between threads. In the fu-
ture we plan to explore di�erent time de�nitions that may allow for better time
synchronization, which may improve the handling of inactive threads.
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