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ABSTRACT
Giotto is a principled, tool-supported design methodology
for implementing embedded control systems on platforms
of possibly distributed sensors, actuators, CPUs, and net-
works. Giotto is based on the principle that time-triggered
task invocations plus time-triggered mode switches can form
the abstract essence of programming real-time control sys-
tems. Giotto consists of a programming language with a for-
mal semantics, and a retargetable compiler and runtime li-
brary. Giotto supports the automation of control system de-
sign by strictly separating platform-independent functional-
ity and timing concerns from platform-dependent scheduling
and communication issues. The time-triggered predictabil-
ity of Giotto makes it particularly suitable for safety-critical
applications with hard real-time constraints. We illustrate
the platform-independence and time-triggered execution of
Giotto by coordinating a heterogeneous flock of Intel x86
robots and Lego Mindstorms robots.

Categories and Subject Descriptors
D.2.2 [Software]: Software Engineering—Design Tools and
Techniques, Software Architectures; D.2.3 [Software]: Pro-
gramming Languages—Language Constructs and Features

General Terms
Design, Languages

1. INTRODUCTION
Embedded software development for control applications con-
sists of two phases: first modeling, then implementation.
Modeling control applications is usually done by control en-
gineers with support from tools such as Matlab or MatrixX.
On the other hand, implementing control designs is a sub-
discipline of software engineering. Control designs impose
hard real-time requirements, which software engineers tradi-
tionally meet by tightly coupling model, code, and platform.
We advocate a decoupling of these domains.

Throughout this paper, the term platform denotes a hard-
ware and operating system configuration. Platforms, which
may be distributed, consist of sensors, actuators, hosts, and
networks. Platform-independent issues include application
functionality and timing. In contrast, platform-dependent
issues include scheduling, communication, and physical per-
formance. The key to automating embedded software de-
velopment is to understand the interface between platform-
independent and platform-dependent issues. Such an inter-
face —i.e., an abstract programmer’s model for embedded
systems— enables decoupling software design from imple-
mentation, even for distributed platforms and even in the
presence of hard real-time requirements.

Giotto provides an abstract programmer’s model based on
the time-triggered paradigm. In a time-triggered system,
computational activity is triggered by the tick of a notional
global clock. A time-triggered system samples its environ-
ment and coordinates communication with respect to such
a clock (as implemented by, say, a clock synchronization
algorithm). Time-triggered systems contrast with event-
triggered systems, in which computational activity is trig-
gered by events. The time-triggered architecture (TTA) [9]
is an important hardware and protocol realization of the
time-triggered paradigm. The TTA has recently gained mo-
mentum in safety-critical automotive applications, where
timing predictability is essential. Giotto offers the predicta-
bility of time-triggered systems, but at a higher and platform-
independent level. Thus, Giotto enables the specification
and automated generation of timing-predictable code for
multiple, even distributed, platforms.

The two central ingredients of Giotto are periodic task invo-
cations and time-triggered mode switches. More precisely, a
Giotto program specifies a set of modes. Each mode deter-
mines a set of tasks and a set of mode switches. At every
time instant, the program execution is in one specific mode,
say, M . Each task of M has a real-time frequency and is
invoked at this frequency as long as the mode M remains
unchanged. Each mode switch of M has a real-time fre-
quency, a predicate that is evaluated at this frequency, and
a target mode, say, N : if the predicate evaluates to true,
then the new mode is N . In the new mode, some tasks
may be removed, and others added. Giotto has a formal
semantics that specifies the meaning of mode switches, of
intertask communication, and of communication with the
program environment. The environment consists of sensors
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Figure 1: Embedded control systems development with Giotto

and actuators. A Giotto program, therefore, determines the
functionality (input and output behavior) of concurrent pe-
riodic tasks, and the timing of the program’s interaction
with its environment. Functionality and timing are the key
elements of the interface between control design and imple-
mentation. A Giotto program does not specify platform-
dependent aspects such as priorities and other scheduling
and communication directives. Giotto’s strength is its sim-
plicity: Giotto is compatible with any choice of real-time op-
erating system (RTOS) or scheduling algorithm. Moreover,
Giotto’s simplicity allows us to study schedule synthesis and
code generation for time-triggered systems.

The Giotto compiler is an essential part of the methodology.
A Giotto program is a platform-independent specification of
a control software design, from which the Giotto compiler
synthesizes embedded software for a given platform. The Gi-
otto tasks are given, say, as C code. The tasks’ worst-case
execution times (WCETs) are known by the Giotto com-
piler.1 Given a platform, the compiler maps tasks to CPUs.
The compiler then computes a scheduling and communica-
tion scheme that guarantees the timing requirements of the
Giotto program. Compilation of the same program for plat-
forms with different resource and performance characteris-
tics will result in different task mappings, and different task
and communication schedules. Since the synthesis problem
is often difficult, the Giotto compiler may fail to find a fea-
sible schedule, even if such a schedule exists. For this case,
we propose Giotto annotations, which allow the programmer
to give directives that aid the compiler in finding a feasible
schedule. A Giotto annotation constrains the compiler to a
nonempty subset of the feasible schedules.

1The difficult problem of estimating WCETs is orthogonal
to the problems that Giotto addresses. Integer linear pro-
gramming (ILP) techniques have been proposed to reduce
the complexity of WCET prediction [10]. Abstract interpre-
tation can be used to generate integer linear programs for
separated cache and path analyses [11].

Figure 1 summarizes the design flow. First the control and
software engineers agree on the functionality and timing of
a design, specified as a Giotto program. Then the software
engineer uses the Giotto compiler to map the program to
a given platform. Most importantly, the Giotto compiler
takes over the tedious and error-prone task of generating
scheduling directives for computation and communication.
In this way, the compiler enables the automation of em-
bedded control systems development. The Giotto compiler
produces an executable which can then be linked against the
Giotto runtime library. The Giotto runtime library provides
a layer of scheduling and communication primitives. This
layer defines the interface between the Giotto executable and
a platform. We have developed the Giotto runtime library
for Wind River’s VxWorks RTOS on Intel x86 targets. We
are currently in the process of porting the library to other
platforms. Because of Giotto’s time-triggered semantics, the
time-triggered architecture [9] is an interesting target.

Figure 2 shows a more detailed picture of the development
flow from a Giotto program to a Giotto executable using
Giotto annotations. For non-distributed platforms, the Gi-
otto compiler may be able to automatically generate Gi-
otto executables which obey the timing requirements of the
program. However, for distributed platforms, the compiler
may be unable to find a feasible schedule. In this case, the
programmer may use Giotto annotations to give directives
to the compiler on how to map tasks to hosts and how to
schedule resources. A Giotto program can be gradually re-
fined with more and more specific annotations, until the
compiler is able to generate a mapping and a schedule that
meet the timing requirements. Giotto annotations fall into
three increasingly specific classes of directives: Giotto-P an-
notations specify the platform; Giotto-S annotations map
tasks to CPUs and provide constraints for the scheduling
of tasks; Giotto-C annotations provide constraints for the
scheduling of communication events. It is important to note
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Figure 2: Automatic compilation with annotated Giotto

that the original functionality and timing assumptions are
not affected by Giotto annotations. Rather, the annotations
provide a means of refining a platform-independent Giotto
program into an executable for a specific platform.

This paper is a progress report on the development of the
Giotto methodology. In the next section we introduce the
pure, platform-independent version of the Giotto program-
ming language. Then we illustrate the embedded control
system development process with Giotto following an exam-
ple presented in Section 3. The example asks for the co-
ordination of a heterogeneous flock of Intel x86 robots and
Lego Mindstorms robots. The example is implemented by a
Giotto program first discussed in Section 4, and then refined
in Section 5 with Giotto annotations. We relate Giotto to
existing work and conclude in Section 6. For a complete and
detailed exposition of Giotto, including formal syntax and
semantics, see the technical report [8].

2. THE GIOTTO PROGRAMMING
LANGUAGE

Giotto is a programming language that aims at distributed
hard real-time applications with periodic behavior, such as
control systems. A typical hard real-time control system pe-
riodically reads sensor information, computes control laws,
and writes the results to its actuators. Moreover, such a
control system may react to changes in its environment by
switching control laws as well as periodicity. The imple-
mentation of hard real-time control systems involves com-
plex scheduling problems which, in the case of distributed
realizations, become even more advanced.

Giotto’s language primitives match the requirements of dis-
tributed hard real-time control applications. A Giotto port
is a physical location in memory, which may be connected to
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Figure 3: The timing diagram for the two Giotto
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a sensor or actuator, or to an input of a control law. A Gi-
otto task is a periodic task that consists of input and output
ports as well as some sequential piece of code, with known
WCET, written in any programming language. Thus Giotto
can be seen as an extension of a standard non-embedded pro-
gramming language. A Giotto task may also carry state in
order to keep track of its past invocations.

The Giotto semantics requires that a Giotto task reads the
values in its input ports exactly at the time of its invocation
and writes its results to its output ports exactly at the end
of its period. Consider Figure 3, which depicts the timing
diagram of a 20ms Giotto task P and a 5ms Giotto task
Q. At the 0ms time instant, both P and Q read the val-
ues of their input ports and after 5ms, task Q writes its
results to its output ports. After 20ms and three more in-
vocations of task Q, task P writes its results to its output
ports. The Giotto semantics does not specify the physical
CPU scheduling of the computation of Giotto tasks. There
is only an implicit assumption that the computation of a Gi-
otto task has to be finished within the task’s period. Thus
it is up to the compiler to use a scheduling mechanism that
guarantees the deadlines.

In order to allow data flow between Giotto tasks it is possi-
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Figure 5: The timing diagram for a transmission on
the output port p

ble to connect input and output ports. A Giotto connection
associates an input port with an output port. Two ports as-
sociated by a Giotto connection are similar to local variables.
Since the result of a task’s computation is written at the end
of the task’s period, data may only flow from past task invo-
cations to current invocations, and not between concurrent
invocations. Figure 4 shows the data flow over a connection
from an output port p of task P to an input port of task Q.
All four invocations of task Q right after the 0ms time in-
stant will see the result of the last invocation of task P before
the 0ms time instant. Independently of when P is finished
with its computation after the 0ms time instant, Q will see
its result at the 20ms time instant. Giotto’s semantical re-
quirements are deterministic and platform-independent, in
the sense that these requirements determine the update rate
of any Giotto port, regardless of any differences in imple-
mentation or performance. An implementation has many
different choices to achieve the semantical requirements.

Figure 5 shows a possible timing of the transmission of the
output port p which meets Giotto’s timing requirements,
where P and Q run on different hosts of some distributed
platform. Assuming that P will always be finished with its
computation within 17ms, we may use the remaining 3ms
to deliver the result to the input port of Q on time. In this
example, suppose that a 1ms time slot is sufficient to deliver
the result of P ’s computation. Consequently, we may reserve
a 1ms time slot somewhere between the 17ms and 20ms time
instant to make sure that p’s value is available at the 20ms
time instant. If P were to finish even earlier, say, before
the fourth invocation of Q at the 15ms time instant, then
we could deliver its result early but would have to buffer
it until after the 15ms time instant in order to guarantee
Giotto’s semantical requirements. This is because task Q
must not see the new value in p before the 20ms time in-
stant. The compiler is in charge of generating not only a
suitable computation schedule but also a suitable communi-
cation schedule. We will later see how the programmer can
guide the compiler with respect to a given platform.

So far, we have seen Giotto ports, connections, and tasks. In

5 10 15 20 25

t (ms)

P

Q

0 12.5 17.5

Mode switch

R

Figure 6: The timing diagram for the Giotto mode
switch s

order to allow a Giotto implementation to react to changes
in its environment we introduce the Giotto mode concept.
A Giotto mode is a set of concurrent Giotto tasks and Gi-
otto mode switches which fully describes the behavior and
timing of a control system. A Giotto program is a set of Gi-
otto modes. A Giotto mode switch, once enabled, causes the
program instantaneously to switch from one Giotto mode
to another. The Giotto mode switch has a predicate over
ports, which is evaluated periodically. To guarantee deter-
minism, we require that the conjunction of any two mode
switch predicates is unsatisfiable. As with Giotto tasks, a
Giotto mode switch has a frequency, which determines when
to evaluate the mode switch predicate. In Giotto, a task
is considered a unit of work, which, once started, must be
allowed to complete.2 A mode switch may cease the peri-
odic invocation of a task if that task finishes at the time
the mode switch predicate is evaluated. However, a mode
switch may not terminate any running task. For each Gi-
otto mode switch the Giotto semantics requires that the
destination mode contains all tasks that may be running
when the mode switch occurs. The frequency of the least
frequent Giotto task in a Giotto mode determines the pe-
riod of the mode, while the least common multiple of the
task and mode switch frequencies determine the unit of the
mode. The invocations of the Giotto tasks of a Giotto mode
within a single period are called a round.

Suppose we are given a Giotto mode M containing the Gi-
otto tasks P and Q with a 20ms and 5ms period, respec-
tively, and a Giotto mode N containing the Giotto tasks P
and R with a 20ms and 2.5ms period, respectively. Then
M and N have the same period of 20ms. Suppose there is
a Giotto mode switch s from M to N with a 5ms period
which conforms to the Giotto requirements. Then M has a
unit of 5ms whereas N has a unit of 2.5ms. Figure 6 depicts
a timing diagram of the Giotto mode switch s enabled at
the 10ms time instant in the middle of a round of M . Since
both modes M and N contain the Giotto task P with a
20ms period, P is not terminated but can finish its compu-
tation as if nothing happened. However, Q’s invocations are
replaced by exactly two times as many invocations of the
Giotto task R. Since N ’s round has already been completed
half-way at the 10ms time instant, there will be four invo-
cations of R before the end of the round at the 20ms time
instant. When a Giotto mode switch occurs within a round,
first the current Giotto mode is terminated instantaneously.
Then the time t until all currently running tasks finish is

2If it is desired that a task end before completion, the work
of the task may be divided into a sequence of tasks, with the
execution of the members of the sequence occurring only if
some condition holds on their input ports.



calculated, and the new mode is entered t seconds before
the start of a new period. This ensures that as little time
as necessary will elapse before the full functionality of the
new mode begins. This functionality includes long-running
tasks, and infrequent mode switches.

3. A DISTRIBUTED HARD REAL-TIME
CONTROL PROBLEM

As an example of a distributed real-time control problem
consider a set of n robots. Each robot has a CPU, two mo-
tors, and a touch sensor. The motors drive wheels and allow
the robot to move forward and backward, and to rotate. The
touch sensor is connected to a bumper. The n robots share
a broadcast communication medium.

Figure 7 shows the behavior of the n robot system, where a
circle depicts the state of a robot and an arc is a transition
from one state to another. Note that here state is a behav-
ioral concept rather than, say, a Giotto mode. A robot that
is either in the lead or evade state is called a leader. A robot
that is either in the follow or stop state is called a follower.
We require that at all times there is only a single robot that
is a leader, while the n − 1 remaining robots are followers.
Upon initialization the leader robot is in the lead state and
determines the movements taken by all n robots. For sim-
plicity, the leader tells everyone to move in the same way,
resulting in a synchronized “dance.” The n−1 followers are
in the follow state and listen to the commands of the leader.

Now, there are two possible scenarios. Either the leader’s
bumper or the bumper of one of the followers is pushed.
Again for simplicity, we assume that no more than a single
bumper can be pushed at the same time. Suppose that the
leader’s bumper is pushed. Then the leader goes into the
evade state while the n − 1 followers go into the stop state.
A robot in the evade state performs an evasion procedure
for a short amount of time, whereas a robot in the stop
state simply stops. When the leader is finished with the
evasion procedure it goes into the lead state, while the n−1
followers go into the follow state. Suppose now that the
bumper of one of the followers is pushed. Then this robot
goes into the evade state while all other robots, including
the leader, go into the stop state. Pushing a bumper of a
follower makes this robot the new leader. This concludes
the behavioral model of the n robot system. In the next
section, we will describe a Giotto program that implements
the n robot system.

4. A GIOTTO PROGRAM
In order to demonstrate Giotto’s applicability to distributed
and heterogeneous platforms, we implemented a Giotto pro-
gram for five robots. Two robots feature a credit card form-
factor single-board computer with an Intel 80486 proces-
sor and a Lucent WaveLAN wireless Ethernet card. The
single board computers run Wind River’s VxWorks RTOS.
Both robots use Lego Mindstorms motors and touch sen-
sors. The three other robots are pure Lego Mindstorms
robots equipped with Hitachi microcontrollers and infrared
transceivers. The microcontrollers run Lego’s original firm-
ware. Communication between the different platforms is
done through a gateway between wireless Ethernet and the
infrared link.

const int STOP = 0;

// command
int com = STOP;

// mode finished
bool fin = TRUE;

// TRUE means pushed
bool sensor1; // robot 1 touch sensor
bool sensor2; // robot 2 touch sensor

int motorL1 = STOP; // robot 1 left motor
int motorR1 = STOP; // robot 1 right motor
int motorL2 = STOP; // robot 2 left motor
int motorR2 = STOP; // robot 2 right motor

Figure 8: The port declarations

[ host bot1 address 192.168.0.1 priorities p0 > p1;
host bot2 address 192.168.0.2 priorities q0 > q1;
net n12 address 192.168.0.0 connects bot1, bot2; ]

start Lead1Follow() {
mode Lead1Follow() period 400ms entryfreq 1 {

taskfreq 1 do int com = command1();
[host bot1 priority p1]

taskfreq 4 do (int motorL1, int motorR1) =
motorCtr1(com); [host bot1 priority p0]

taskfreq 4 do (int motorL2, int motorR2) =
motorCtr2(com); [host bot2 priority q0]

exitfreq 2 if (sensor1 && not(sensor2)) then Stop1();
exitfreq 2 if (sensor2 && not(sensor1)) then Stop2();

[ net n12 slots s0 (0,20), s1 (20,40),
s2 (200,220), s3 (220,240), s4(340,360);

push sensor1 from bot1 to bot2
in net n12 slots s0, s2;

push sensor2 from bot2 to bot1
in net n12 slots s1, s3;

push com from bot1 to bot2
in net n12 slots s4; ] }

mode Stop1() period 400ms entryfreq 2 {
taskfreq 1 do int com = command1();

[host bot1 priority p1]
taskfreq 2 do (int motorL1, int motorR1) =

motorCtr1(STOP); [host bot1 priority p0]
taskfreq 2 do (int motorL2, int motorR2) =

motorCtr2(STOP); [host bot2 priority q0]

exitfreq 1 if (TRUE) then Evade1Stop(); }

mode Evade1Stop() period 400ms entryfreq 1 {
taskfreq 1 do (int com, bool fin) =

evade1(); [host bot1 priority p1]
taskfreq 4 do (int motorL1, int motorR1) =

motorCtr1(com); [host bot1 priority p0]

exitfreq 1 if (fin) then Lead1Follow();

[ net n12 slots s0 (340,360);
push fin from bot1 to bot2

in net n12 slots s0; ] }

...
}

Figure 9: Two-robot Giotto program with annota-
tions
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For the sake of simplicity, we describe the Giotto program
for a two-robot system. Figures 8 and 9 depict the Giotto
program. Figure 8 shows the declaration and initialization
of the required ports. We assume that the port sensorX
contains TRUE whenever the bumper of robot X is pushed.
The ports motorLX and motorRX are connected to the left
and right motor of robot X, respectively.

Figure 9 depicts the Giotto program. It consists of five Gi-
otto modes. The Lead1Follow mode is the start mode. In
this section, any program code in brackets can be disre-
garded; it belongs to the annotated version of Giotto. We
will discuss annotated Giotto in the next section. Recall
that each Giotto mode describes the behavior of the whole
system of hosts and nets. Since each robot is either in the
lead and follow state or in the evade and stop state, we use a
LeadXFollow mode and a EvadeXStop mode for each leader
X. To improve responsiveness of the implementation we also
introduce for each robot X a Giotto mode StopX, which al-
lows the robots to stop quickly. In general, for n robots we
get 3n modes.

All modes run with a period of 400ms with an entry fre-
quency of one, except for the StopX modes, which have an
entry frequency of two for better performance. Consider the
Lead1Follow mode in which robot one is the leader. The
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Figure 11: The timing diagram for a round of the
Stop1 mode

command1 task runs once per round and computes a com-
mand stored in its only output port com. There are two
more Giotto tasks motorCtr1 and motorCtr2 running with
a period of 100ms four times per round. The two tasks con-
trol the motors of both robots according to the command in
com. The higher frequency of these tasks allows for smoother
control of the motors. Figure 10 shows the timing diagram
for one round in the Lead1Follow mode.

The state of the touch sensors is checked twice every round
in the three mode switch conditions. If the bumper of robot
one is pushed, we switch to the Stop1 mode in which both
robots stop driving. Figure 11 depicts the timing diagram
for one round of the Stop1 mode. After completing one
round of the Stop1mode the system proceeds to the Evade1-
Stop mode, in which robot one performs an evasion proce-
dure and robot two does not do anything. Similarly, if the
bumper of robot two is pushed we switch to the Evade2Stop
mode via one round in the Stop1 mode.

In the Evade1Stop mode, the evade1 task computes once
per round the next evasion step stored in com, and whether
the current mode is finished or not (stored in the output
port fin). Note that upon entry to the Evade1Stop mode
fin always contains TRUE. However, its value will be checked
by the mode switch condition no earlier than at the end of
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the first round after evade1 updated fin. Figure 12 shows
the timing diagram for the Evade1Stop mode. There is also
a Giotto task motorCtr1 running with a period of 100ms
four times per round, which controls the motors of robot
one according to the evasion steps in com. Whenever fin
contains TRUE we switch to the Lead1Follow mode.

Figure 13 shows the timing diagram for two mode switches
from the Lead1Follow mode to the Stop1 mode and then to
the Evade1Stop mode. The mode switch to the Stop1 mode
happens in the middle of the round of the Lead1Followmode
at the 200ms time instant. Then the robots stop 200ms
later at the 400ms time instant after both motor control
tasks have been invoked once. At the 400ms time instant,
another mode switch is performed to the Evade1Stop mode,
which performs an evasion maneuver with robot one. The
implementation of the Lead2Follow, Stop2, and Evade2Stop
modes, in which robot two is the leader, works similarly
as described above. We have introduced a Giotto program
implementing a two-robot system. In the next section, we
will discuss the compilation of the Giotto program for a
given platform.

5. AUTOMATIC COMPILATION WITH AN-
NOTATED GIOTTO

In the previous section, we have discussed the platform-
independent aspects of the Giotto program which imple-
ments the two-robot system. For a non-distributed plat-
form, this level of detail is sufficient to allow the Giotto com-
piler to generate code that guarantees the timing require-
ments of Giotto. However, code generation for distributed
platforms is more complex and may require user interaction.
Usually, the programmer intends a particular mapping of
Giotto tasks to hosts as well as a mapping of Giotto ports
to networks. A reasonable mapping for the two-robot ex-
ample may distribute the commandX, evadeX, and motorCtrX
tasks on robot X, respectively, where the motorCtrX task
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Figure 14: The timing diagram for a round of the
Lead1Follow mode with scheduling details

should get the highest priority because of its shortest dead-
line. Consequently, the values in com, fin, and sensorX have
to be communicated between the two robots.

Starting with a pure Giotto program, which does not con-
tain any platform-related description, the programmer may
gradually provide the Giotto compiler, using Giotto annota-
tions, with more and more details about the target platform.
A Giotto annotation falls in one of three possible categories:
(1) a Giotto-P annotation (platform) specifies names and
unique IP addresses for all hosts and networks as well as a
list of priorities for each host in the system; (2) a Giotto-S
annotation (schedule) specifies for a Giotto mode the Giotto
task-to-host mappings and the priorities of the Giotto tasks;
(3) a Giotto-C annotation (communication) specifies for a
Giotto mode the Giotto port-to-network mappings and the
time slots of the Giotto ports. These annotations are suited
for static priority RTOS hosts and TDMA networks; for tar-
geting platforms with different scheduling primitives, differ-
ent annotations can be developed. For example, for plat-
forms consisting of non-preemptive RTOS hosts and CAN
networks, Giotto-C annotations would specify time slots for
tasks and priorities for communications.

The Giotto program of Figure 9 contains examples of all
three types of Giotto annotations. A Giotto-P annotation
at the top of the program provides details on the two-robot
platform. There are two hosts called bot1 and bot2, which
are connected by a network called net12. The Giotto com-
piler may exploit this information to improve code gener-
ation. However, more specific information is given by the
Giotto-S and Giotto-C annotations in the example. Note
that for flexibility we use symbolic names rather than num-
bers for Giotto task priorities and Giotto port time slots.

For instance, in the Lead1Followmode, the command1 task is
assigned to bot1 with the priority p1, which is lower than the
priority p0 of the motorCtr1 task running on bot1 as well.
Consider Figure 14, which depicts the timing diagram for
a round of the Lead1Follow mode with scheduling details.
The dotted line shows which Giotto task is running on bot1’s
CPU. The lower priority command1 task gets the CPU only
when the motorCtr1 task is finished. In order to allow both
robots to evaluate the mode switch predicates, the sensorX
ports have to be exchanged between the robots twice per
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Figure 16: The timing diagram for Giotto mode
switches to the Stop1 mode and to the Evade1Stop

mode with scheduling details

round because of the mode switch period of 200ms. Since the
sensors are sampled at the 0ms and 200ms time instant, their
values cannot be transmitted early. The push command
indicates that the output host initiates the communication.
The dual pull command is also possible, for example, to
support less capable distributed sensors.

The signals from the sensor1 and sensor2 ports in Fig-
ure 14 show the exact timing for the transmission of the
sensor1 and sensor2 values, respectively. Note that we as-
sume that communication takes CPU cycles. The delay of
40ms of the sensor value update also delays the final deci-
sion of performing a mode switch which, however, does not
affect the Giotto’s semantical requirements as long as all Gi-
otto tasks still meet their deadlines. Finally, the signal for
the com port in Figure 14 shows that the com value is trans-
mitted once per round from bot1 to bot2 early enough to
be available at the beginning of the next round. The early
transmission comes at a cost: the task command1 has to finish
its computation earlier than by the end of its period.

Figure 15 shows the timing for a round of the Evade1Stop
mode with scheduling details. In this mode, only the fin
port has to be transmitted from bot1 to bot2 once per
round, as shown by the top-most line between the 300ms and
400ms instants. The timing and scheduling details for two
Giotto mode switches from the Lead1Follow to the Stop1
mode and then to the Evade1Stop mode are shown in Fig-
ure 16. Although the mode switch to the Stop1 mode hap-
pens logically at the 200ms time instant, it is actually per-
formed 40ms later by starting the motorCtrX tasks of the

Stop1 mode rather than of the Lead1Follow mode. Note
that the transmission of the com port is skipped, because its
value is not needed by any Giotto task in the Stop1 mode.

With annotated Giotto, the programmer is able to give di-
rectives to the Giotto compiler on how to map Giotto tasks
and Giotto ports to a given platform of hosts and networks.
Giotto-S and Giotto-C annotations allow even more guid-
ance on how to schedule computation and communication
resources. Most importantly, Giotto annotations refine a
given non-annotated Giotto program without affecting the
functionality and timing specification. In this way, Giotto
separates compilation from the use of a particular schedul-
ing or communication scheme: if incomplete directives are
given, then different compilers may use different scheduling
schemes. Indeed, one compiler, using one particular schedul-
ing scheme, may fail, whereas another, “smarter” compiler
may succeed in compiling a given Giotto program on a given
distributed platform.

6. SUMMARY AND RELATED WORK
We have presented a tool-supported design methodology for
embedded control systems that is based on the the program-
ming language Giotto. In Giotto, the programmer speci-
fies the functionality and timing of a control design, leaving
the specification of scheduling schemes to the Giotto com-
piler. The Giotto compiler automates the implementation of
embedded control systems, by taking over the tedious and
error-prone task of producing scheduling and communica-
tion directives. Given a Giotto program and a particular
platform, the Giotto compiler may (or may not) be able to
generate Giotto executables that obey the timing require-
ments. When targeting complex distributed platforms, the
programmer may also give explicit scheduling directives to
the compiler using Giotto annotations. Giotto has a time-
triggered semantics. Task invocations as well as observa-
tions of the environment in a Giotto system are triggered by
the tick of a notional global clock. Consequently, the tim-
ing behavior of a Giotto system is highly predictable, which
makes Giotto particularly well-suited for safety-critical ap-
plications with hard real-time constraints.

We have implemented a compiler for fully annotated Giotto,
with tasks that are given as C functions, as well as a run-
time library for Wind River’s VxWorks RTOS. The Giotto
executables are generated as C source code that is compiled
and linked against the runtime library. In the near future
we hope to develop a Giotto compiler that makes schedul-
ing decisions, rather than relying on full annotations, and we
hope to develop runtime systems for additional platforms. A
particularly interesting platform is the time-triggered archi-
tecture [9], which has already built-in many of the primitives
on which the abstract Giotto model is based.

Many of the individual elements of Giotto are derived from
the literature. However, we believe that the use of time-
triggered task invocation plus time-triggered mode switching
for platform-independent real-time programming is novel.
Giotto is similar to architecture description languages (ADLs)
[3], particularly MetaH [12]. ADLs shift the programmer’s
perspective from small-grained features, such as lines of code
to large-grained features, such as tasks, modes, and inter-
component communication. ADLs allow the compilation of



scheduling code to connect tasks written in conventional pro-
gramming languages. MetaH is designed for real-time, dis-
tributed avionics applications. Giotto can be seen as cap-
turing a time-triggered fragment of MetaH in an abstract
and formal way. Unlike MetaH, the Giotto abstraction does
not constrain the implementation to a particular schedul-
ing paradigm as long as the timing requirements of a Giotto
program are guaranteed. Since the semantics of Giotto is
defined formally, the behavioral properties of a Giotto pro-
gram may be subject to formal verification [7].

The goal of pure Giotto —to provide a platform-independent
programming abstraction for real-time systems— is shared
also by the synchronous reactive programming languages [5],
such as Esterel [2], Lustre [6], or Signal [1]. While the syn-
chronous reactive languages are designed around zero-delay
computation, Giotto is based on the formally weaker notion
of unit-delay computation, because the execution of a Giotto
task has a positive duration. This avoids the complications
involved with fixed-point semantics and shifts the emphasis
to code generation under WCET constraints. Giotto can be
seen as identifying a class of synchronous reactive programs
that support both typical real-time control applications and
distributed code generation.
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