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Abstract
We present ACDC, an open-source benchmark that may be config-
ured to emulate explicit single- and multi-threaded memory alloca-
tion, sharing, access, and deallocation behavior to expose virtually
any relevant allocator performance differences. ACDC mimics pe-
riodic memory allocation and deallocation (AC) as well as persis-
tent memory (DC). Memory may be allocated thread-locally and
shared among multiple threads to study multicore scalability and
even false sharing. Memory may be deallocated by threads other
than the allocating threads to study blowup memory fragmentation.
Memory may be accessed and deallocated sequentially in alloca-
tion order or in tree-like traversals to expose allocator deficiencies
in exploiting spatial locality. We demonstrate ACDC’s capabili-
ties with seven state-of-the-art allocators for C/C++ in an empir-
ical study which also reveals interesting performance differences
between the allocators.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Memory management

General Terms Performance, Measurement

Keywords benchmark; explicit heap management; multicore

1. Introduction
ACDC is an open-source benchmark that may be configured to em-
ulate virtually any single- and multi-threaded mutator behavior for
measuring allocation, deallocation, and memory access throughput
as well as memory consumption and multicore scalability of an al-
locator. ACDC itself is designed and implemented to introduce neg-
ligible temporal and bounded spatial overhead and to scale to large
numbers of threads on multicore hardware. In particular, ACDC
implements all per-object operations in constant time, pre-allocates
all memory for bookkeeping during initialization, and minimizes
contention on shared memory for bookkeeping by bulk processing
shared objects.

ACDC emulates the lifecycle of dynamically allocated objects
which, as shown in Figure 1, begins with the allocation of memory
for storing an object on the heap, followed by read and write
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Figure 1: The lifecycle of an object

accesses to the allocated memory, and ends with the deallocation
of the allocated memory. The time from allocation to deallocation
is called the lifetime of an object. The time from allocation to last
access is called the liveness of an object which ACDC, unlike other
benchmarking tools, also emulates explicitly by controlling object
access. The difference between lifetime and liveness of an object,
here called deallocation delay, emulates mutator inefficiencies in
identifying dead objects for deallocation which may in turn expose
allocator inefficiencies in handling dead memory.

ACDC allocates objects of different size and may do so period-
ically at different configurable frequencies for temporary use with
finite lifetime (AC) as well as for permanent use with infinite life-
time (DC), hence the name. Size, lifetime, and number of objects
are determined according to configurable random distributions that
mimic typical behavior observed with allocation-intensive C pro-
grams where smaller and short-living objects are more likely to
occur than larger and long-living objects [3, 21].

Time in ACDC is logical. Time advances when a configurable
amount of memory, called the ACDC time quantum, has been allo-
cated [11]. The allocation and deallocation frequencies are derived
from the time quantum. Objects are allocated at the rate of the time
quantum and deallocated at the rate of their lifetimes which are
multiples of the time quantum.

We present experimental evidence that ACDC is able to reveal
the relevant performance characteristics of seven state-of-the-art
allocators for C/C++. Our experiments are thus firstly about the
capabilities of ACDC and only secondly about the allocators al-
though seeing their relative performance turns out to be interest-
ing and valuable, in particular the time-space trade-offs of scalabil-
ity versus memory consumption as well as spatial locality versus
false sharing. The few unexplained anomalies are to the best of our
knowledge artifacts caused by the allocators, not ACDC.

The structure of the paper is as follows. ACDC is described in
detail in Section 2. Related work is discussed in Section 3. The
allocators and experiments are described in Section 4. Conclusions
are in Section 5.
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Figure 2: A lifetime-size-class is implemented by either a linked
list or a binary tree

2. ACDC
ACDC allocates sets of objects with the same size and lifetime and
gathers the objects in so-called lifetime-size-classes. In particular,
each ACDC thread first determines the number of objects that are to
be allocated next based on size and lifetime values obtained by con-
figurable random distributions and then allocates the objects one
by one and stores them in a lifetime-size-class. In order to imple-
ment the logical time in ACDC each thread maintains a thread-local
clock. After a thread allocated the objects for a lifetime-size-class
the thread checks if it has allocated the amount of memory given
by the ACDC time quantum since the last time advance, indepen-
dently of the memory other threads have allocated. If yes, the thread
advances the clock and proceeds to share, access, and deallocate
objects. If not, the thread allocates objects for another lifetime-
size-class until time is advanced. The logical time in ACDC is thus
thread-local and approximative since clocks may be late up to the
amount of memory allocated for the objects of the largest lifetime-
size-class. The drift between clocks is bounded by a configurable
amount through a barrier. The lifetime of a shared object ends when
it has ended for all threads sharing the object.

As shown in Figure 2, a lifetime-size-class may be configured
to be implemented by either a linked list or a binary tree of objects
to facilitate subsequent memory access and eventual deallocation
either in the exact (list) or mirrored, depth-first (tree) order of
allocation. In particular, the tree is constructed in pre-order, left-to-
right and subsequently traversed in pre-order, right-to-left. Other
choices are possible but remain for future work. Multiple lifetime-
size-classes containing objects of different size but all with the
same lifetime are gathered in so-called lifetime-classes which are
linked lists of such lifetime-size-classes, as shown in Figure 3.
Lifetime-classes facilitate constant-time insertion of lifetime-size-
classes and deallocation of all objects in a given lifetime-class in
time linear in the number of objects. The objects in a lifetime-class
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Figure 3: A lifetime-class is a linked list of lifetime-size-classes
with the same lifetime
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Figure 4: A heap-class is an array of lifetime-classes where the
index represents a lifetime

are deallocated when their lifetime ends in which case the lifetime-
class is said to have expired.

ACDC distinguishes a configurable amount of lifetime-classes
of which one is dedicated to permanent objects. Each ACDC thread
maintains its own lifetime-classes stored in an array, called heap-
class, which is indexed by lifetime for constant-time access, as
shown in Figure 4.

For benchmarking single-threaded allocation and deallocation
throughput and memory consumption ACDC may be configured
to emulate a single-threaded mutator that allocates and deallocates
objects but never actually accesses the allocated memory, as shown
in Figure 5a. For benchmarking memory access throughput to ex-
pose differences in memory layout quality ACDC may also be
configured to read and write allocated memory between allocation
and deallocation. In configurations with a single ACDC thread, as
shown in Figure 5b, ACDC may thus expose allocator inefficiencies
in accommodating spatial locality.

In multi-threaded configurations, for benchmarking multi-
threaded allocation and deallocation throughput as well as mem-
ory consumption and multicore scalability, as shown in Figure 5c,
ACDC may expose allocator inefficiencies in avoiding contention
on allocator data structures (through concurrent allocation and
deallocation), blowup memory fragmentation [5] (through deal-
location of objects allocated by other threads), and false sharing of
allocated objects (through thread-local access of unshared objects).
All three types of inefficiencies may prevent multicore scalability.

Sharing objects in multi-threaded ACDC works by having each
ACDC thread allocate a configurable number of objects for shared
rather than thread-local use. In addition to the thread-local heap-
classes each thread also maintains a second, lock-protected heap-
class. The lock-protected heap-classes of all threads together serve
as distribution pool for shared objects, as shown in Figure 6. Each
thread (producer) inserts lifetime-size-classes of objects that are
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Figure 6: The distribution pool is an array of lock-protected heap-
classes, one per thread.
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Figure 5: ACDC in a nutshell

Parameter Range Default
mode ACDC or false-sharing ACDC
number of threads 1 to 64 1
number of objects 0 to int-max 0
min. size 8 to int-max 16 B
max. size min. size to int-max 256 B
min. liveness 1 to benchmark duration 1
max. liveness min. liveness to int-max 10
deallocation delay 0 to benchmark duration 0
time quantum 1 to int-max 256 KB
benchmark duration 1 to int-max 50
max. time drift 1 to benchmark duration 10
list-based ratio 100% - tree-based ratio 100%
access live objects TRUE or FALSE TRUE
write access ratio 0% to 100% 10%
shared objects TRUE or FALSE FALSE
shared objects ratio 0% to 100% 100%
retrieving threads ratio 0% to 100% 100%

Table 1: ACDC runtime options and default settings

meant to be shared into the lock-protected heap-classes of (a subset
of) all threads and retrieves (consumer) possibly many lifetime-
size-classes inserted by others packaged as lifetime-classes from
its own lock-protected heap-class. Insertion is linear in the number
of threads and retrieval is linear in the number of lifetime-classes.
The retrieved lifetime-classes are then inserted into the thread-local
heap-class in constant time for further thread-local processing.

2.1 Configuration
ACDC offers extensive configuration of its allocation, sharing, ac-
cess, and deallocation behavior. Table 1 shows the relevant options
along with their default values. We briefly describe each parameter.

The mode parameter switches between ACDC’s default mode
in which object sizes and lifetimes are determined by random
distributions and a mode for exposing allocator inefficiencies due
to false sharing. In this mode ACDC only allocates small objects
with the same, fixed lifetime.

The number of threads defines how many concurrent threads
ACDC creates and runs. The upper bound of 64 threads is ex-
plained in Section 2.3. The number of objects defines how many
objects ACDC allocates in a lifetime-size-class. With the default of
zero ACDC determines the number dynamically based on object
size and lifetime. The minimum and maximum size and liveness
define the range of the random distributions that determine the size
and liveness, respectively, of the objects ACDC allocates. The deal-
location delay extends the lifetime of all objects such that ACDC

stops accessing the objects when their liveness ended but deallo-
cates them only after their lifetime ended.

The time quantum defines the amount of memory that each
thread needs to allocate to advance its thread-local clock by one
unit of time. The benchmark duration defines the time to terminate
the benchmark by how often each thread needs to advance its clock
before termination. The maximum difference between the clock
value of a given thread and the value of any other thread’s clock
is bounded by the maximum time drift.

ACDC gathers allocated objects with the same size and lifetime
in lifetime-size-classes that may be implemented by a linked list or
a binary tree. The data structure is chosen randomly according to
the configured list-based and tree-based ratio.

By default ACDC accesses live objects in between allocation
and deallocation as shown in Figure 5b. A behavior where objects
are not accessed at all, as shown in Figure 5a, may also be config-
ured by setting access live objects to FALSE. In this case the write
access ratio, which controls the fraction of the live heap that will
be modified upon access, is ignored. Otherwise, 10% of the live
memory are by default written during access.

The behavior illustrated in Figure 5c can be configured by
setting shared objects to TRUE. In this case the shared objects ratio
defines the number of allocated lifetime-size-classes that will be
shared with other threads. The receiving threads ratio controls the
number of threads that will receive references to the shared objects
through the distribution pool.

2.2 Metrics and Probes
ACDC explores the basic performance dimensions time and space.
Time is reported in normalized total allocation time, normalized
total deallocation time, and normalized total access time in mil-
liseconds (also consistently in all experiments). Note that unlike
the logical time of ACDC, temporal performance is reported in real
time. By allocation time we mean the time an allocator spends in
allocating objects. Total allocation time is the sum of the allocation
time the allocator benchmarked by ACDC spends in all threads.
The normalized total allocation time is the total allocation time di-
vided by the number of threads. Total allocation time is thus equal
to normalized total allocation time in single-threaded configura-
tions. Allocation time is measured in CPU cycles by reading the
CPU time stamp counter before and after allocating a lifetime-size-
class of objects. The CPU cycles are scaled to milliseconds during
normalization. Normalized total deallocation time and normalized
total access time are defined similarly. Here the time stamp counter
is read before and after deallocating expired lifetime-classes and
accessing objects, respectively. The time spent in sharing lifetime-
size-classes, controlling the time drift, and other bookkeeping is
thus not considered.



Space is reported in normalized average memory consumption
in megabytes (again also consistently in all experiments). By mem-
ory consumption we mean the memory consumption of ACDC
without the overhead of the bookkeeping data structures. For mea-
suring memory consumption we have implemented an interface to
the Linux proc filesystem that provides the resident set size, i.e., the
number of virtual memory pages ACDC maintains in real memory.
ACDC samples memory consumption at each time advance starting
after a warm-up phase of twice the maximum liveness. The average
memory consumption is the arithmetic mean of the samples with-
out the bookkeeping overhead. The normalized average memory
consumption is the average memory consumption again divided by
the number of threads.

For simplicity, we do not allocate permanent objects in our ex-
periments so that the arithmetic mean is a useful metric and the
memory required for bookkeeping overhead is bounded in ACDC’s
configuration parameters and can thus be pre-allocated. Although
the required amount may be estimated for each configuration we
determined an amount that works for all experiments (500 MB)
and then only used that amount. We employ the brk system call for
pre-allocating the memory for bookkeeping to avoid performance
impacts on the allocators under test. All bookkeeping objects are al-
located by ACDC’s own memory management in the pre-allocated
space and aligned and padded to cache lines to avoid false sharing.

2.3 Implementation details
ACDC constructs lifetime-size-classes by approximating empir-
ical findings that suggest objects allocated by real applications
are more likely to be small and short-living than large and long-
living [3, 21]. ACDC determines size, lifetime, and number of
objects of a lifetime-size-class in constant time in three steps. First,
ACDC selects the size from a uniformly distributed, discrete in-
terval [2r, 2r+1] where r is selected from a uniformly distributed,
discrete interval [log2(min. size), log2(max. size)). Next, ACDC
randomly selects the liveness from a uniformly distributed, dis-
crete interval [min. liveness, max. liveness] and adds the dealloca-
tion delay to obtain the lifetime. In the last step, ACDC calculates
the number of objects based on the selected size and liveness with
the following formula:

number of objects =(log2(max. size)− log2(selected size) + 1)2∗
(max. liveness − selected liveness + 1)2

The formula yields a large number of objects if the distance of
the selected size to the maximum size is large (the objects are small)
or if the distance of the selected liveness to the maximum liveness
is large (the objects are short-living).

ACDC may run up to 64 threads. The upper bound enables lock-
free deallocation of shared objects through atomic operations on
64-bit words storing 64-bit bitmaps with one bit for each thread.
Each lifetime-size-class maintains such a bitmap where the thread
that allocates the lifetime-size-class sets the bits that are assigned
to the threads that are selected to share the lifetime-size-class. Each
sharing thread resets its assigned bit when the lifetime-class that
contains the shared lifetime-size-class expires without deallocating
the objects unless the thread determines the word storing the bitmap
to be zero. On platforms that support atomic operations on 128-bit
words ACDC may run up to 128 concurrent threads.

3. Related Work
3.1 Empirical studies
Empirical studies on memory allocators are typically performed as
part of the literature on new allocators. To the best of our knowl-
edge there is no recent academic study of the relative performance
of explicit memory allocators. The Oracle Technology Network

contains a recent article on the performance impact of memory al-
location in multi-threaded applications [20]. However, it only com-
pares three allocators namely Hoard [5], libumem [6] (based on the
SunOS slab allocator), and mtmalloc (part of Oracle Solaris 10).
The study concludes that in terms of latency and scalability mtmal-
loc outperforms the other two allocators and in terms of memory
efficiency libumen does best. A different benchmark performed by
Berger [4] on the same allocators showed speedups of 2.74 and 3.13
comparing Hoard to libumem and mtmalloc, respectively.

3.2 Benchmarks
The literature on memory management systems contains a large
and diverse set of benchmarking programs for evaluating the per-
formance of allocators. We focus our discussion on synthetic pro-
grams that appeared in well-known allocator papers, e.g. Hoard [5],
LKmalloc [13], Streamflow [18], and the allocator by Michael [17].

The Larson benchmark [13] aims at simulating the behavior of
a server responding to a client request. A worker thread in the Lar-
son benchmark receives a set of objects from another thread, per-
forms random deallocations and allocations on this set and writes
two words in each newly allocated object. Then it passes the set of
objects to a new thread performing the same routine and terminates.
The benchmark may run multiple workers in parallel. The threads
allocate objects of different size which are uniformly distributed
in a configured range. This may be an unrealistic assumption ac-
cording to previous results on object lifetime characteristics [3, 21].
Also, this benchmark does not allow to control the lifetime of the
allocated objects and does not implement heap access.

Sh8bench is the latest version of a synthetic benchmark by Mi-
croQuill [2]. It computes a simple object size distribution based on
a statically predefined enumeration of only 12 different sizes rang-
ing from 8 to 168524 bytes. In each round, the mutator deallocates
a portion of the objects allocated in the previous round and also
allocates new objects. The mutator does not involve access to the
requested dynamic memory. Like the Larson benchmark, sh8bench
offers no control over object lifetimes.

Lever and Boreham presented a performance study of ptmal-
loc [15] using three benchmarking programs as part of the Linux
scalability project. The first program, called malloc-test, runs mul-
tiple threads that all allocate a fixed number of objects of fixed size
and deallocate each object right after allocation. The goal is to ex-
amine malloc and free latency for an increasing number of threads.
The second program is a simplified version of the Larson bench-
mark using only a fixed object size. The goal of this benchmark is
to expose blowup memory fragmentation [5], i.e., increasing mem-
ory consumption when deallocating threads are different from al-
locating threads. Finally, the third program tests for false sharing
effects where a set of objects is allocated and each object is ac-
cessed by a different thread. However, only malloc-test is available
for download on the Linux scalability project webpage [1].

These commonly used benchmarking programs achieve similar
goals in different ways but, unlike ACDC, do not allow to evaluate
all relevant allocator performance criteria in isolation. The Larson
benchmark only provides a throughput metric counting the num-
ber of allocations and deallocations. The malloc-test and Sh8bench
benchmarks accumulate all performance information in total exe-
cution time. Effects related to spatial locality cannot be explicitly
studied with any of these tools. Moreover, the liveness of objects
is not modeled explicitly. In contrast, ACDC is an attempt to en-
able emulation of mutator behavior that reveals all relevant alloca-
tor performance characteristics.

For garbage-collected programming languages like Java there
exist standardized evaluation suites like SPECjvm2008 [19]. How-
ever, ACDC currently does not support benchmarking implicit
memory management systems.



4. Experiments
All experiments ran on a server machine with four 6-core 2.1 GHz
AMD Opteron 8425 processors, 64 KB L1 and 512 KB L2 data
cache per core, 6 MB shared cache per processor, 110 GB of main
memory, and Linux kernel version 3.2.0.

The allocators were compiled using their default Makefile (all
with compiler optimizations enabled) except ptmalloc2 and tcmal-
loc which came pre-compiled with Ubuntu LTS 12.04. We obtained
ptmalloc2 from the GNU C library version 2.15 and tcmalloc from
the Google perftools package version 1.7.

Unless stated otherwise, we use the metrics defined in Sec-
tion 2.2 and repeated each experiment five times. The graphs show
the arithmetic mean and the sample standard deviation. The bench-
mark duration is set to multiples of maximum liveness where we
observed that the relative performance differences between alloca-
tors do not change anymore by extending the benchmark duration.

4.1 Allocators
We employ seven state-of-the-art multi-threaded allocators for
C/C++ that worked for us out of the box without any modifica-
tions. In the following we briefly discuss the key features of these
allocators.

The ptmalloc2 allocator by Wolfram Gloger is based on Doug
Lea’s allocator [14] and shipped as part of the GNU C library
(glibc) in most Linux distributions. Objects allocated through pt-
malloc2 are 16-byte-aligned and have an 8-byte header. Requests
for objects smaller than 64 bytes are served from so-called fast
bins, i.e., caching pools of recently freed objects. Objects larger
than 512 bytes are managed in a best-fit fashion. The ptmalloc3
allocator is the latest version of Wolfram Gloger’s allocator imple-
mentation [9]. It uses a POSIX mutex for all public calls to the
allocator. The algorithms are also based on Doug Lea’s allocator.

The jemalloc allocator [7, 8] written by Jason Evans aims
at multicore scalability. It is the default allocator in FreeBSD,
NetBSD, and some versions of Mozilla Firefox. The allocator di-
vides the heap into independent sub-heaps called arenas that can
be processed in parallel. In addition, each thread maintains a cache
that can be accessed without locking. Freed objects are always re-
turned to the arena they were allocated from to control blowup
memory fragmentation [5].

A similar approach is taken by the tcmalloc allocator [10] from
Google. The allocator serves requests for small objects from thread-
local caches. When a request cannot be served, a bunch of objects
is fetched from the central heap. Large objects are directly served
by the central heap. In contrast to jemalloc, small freed objects are
not put in the thread cache of the allocating thread but in the cache
of the deallocating thread. When a thread cache exceeds a size of
2MB a garbage collector moves unused objects to the central heap,
again to control blowup memory fragmentation.

Hoard by Berger et al. [5] was the first allocator designed
for multicore scalability using per-CPU heaps that addressed
the blowup fragmentation problem. Objects are allocated in size
classes which are organized in so-called superblocks, i.e., contigu-
ous memory allocated from the operating system in multiples of the
system page size. Freed objects are returned to the per-CPU heap
from which they were allocated. Superblocks that become less uti-
lized than a given empty fraction may be moved to a shared central
heap where the available memory can be re-used by another per-
CPU heap thus balancing free memory among threads and limiting
blowup fragmentation.

The tbb Scalable Allocator [12] by Intel uses thread-local
caches and a global free list when a request cannot be served from
the object caches. The global free list is protected by fine-grained
locks. As with jemalloc, freed objects are returned to the heap they
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Figure 7: Average memory consumption for an increasing deallo-
cation delay

were allocated from. To reduce synchronization, tbb uses two sep-
arate free lists for objects returned by the owner and other threads.

The Lockless Memory Allocator (llalloc) [16] also uses differ-
ent algorithms for different size classes. Small objects up to 512
bytes are managed by a slab allocator that uses slabs for each size
class which are dynamically allocated for each thread. Empty slabs
are traded between threads using per-CPU locking. Objects larger
than 512 bytes are served by a best-fit allocation strategy which
is extended by a per-size object cache that serves objects in LIFO
order. Synchronization in llalloc is performed by lock-free queues,
one queue per thread. A thread that frees an object allocated by an-
other thread places the object in that thread’s queue. Eventually, the
allocating thread will empty its queue and reuse the object thereby
controlling blowup memory fragmentation.

ACDC itself provides two mutator-aware allocators as baseline,
in particular for benchmarking spatial locality and false-sharing
performance. The first allocator, called compact, reserves a con-
tiguous area of memory and arranges it as array of objects to store
the objects of a lifetime-size-class without any space in between the
objects. In list-based lifetime-size-classes the first object is stored
at index 0 and the successor of an object stored at index i is located
at index i + 1. In tree-based lifetime-size-classes the root object
resides at position 0 and the left and right child of an object stored
at position i is located at index 2i+1 and 2i+2, respectively. The
second allocator, called align, aligns an object to cache line bound-
aries and adds padding space to occupy the rest of the cache line
such that no other object is stored in the same cache line. The align
allocator avoids false sharing at the expense of wasted memory and
cache space. Both, the compact and the align allocators allocate and
deallocate in constant time modulo the underlying allocator. Both
are built on top of ptmalloc2 and therefore share its temporal and
spatial performance characteristics. We point that out in the rele-
vant parts of the experimental evaluation.

4.2 Capabilities of ACDC: allocation and deallocation time
We measure allocation and deallocation time for an increasing
heap size without accessing any objects. The heap size is increased
by increasing the deallocation delay without changing any other
parameters which may affect allocation and deallocation time, e.g.,
size, liveness and number of objects. The data in Figure 7 confirms
that the deallocation delay does indeed translate nearly linearly into
heap size for all allocators. The non-default portion of the ACDC
configuration for this experiment is in Table 2.



Parameter Value
min. size 8 B
max. size 8 KB
deallocation delay increasing from 0 to 15
time quantum 50 MB
access live objects FALSE

Table 2: ACDC configuration for the allocation and deallocation
time experiment (only non-default values are shown)
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Figure 8: Total allocation time for an increasing deallocation delay
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Figure 9: Total deallocation time for an increasing deallocation
delay

Figure 8 depicts the total allocation time for an increasing deal-
location delay. With the exception of jemalloc, the allocation time
of all allocators increases close to linearly with the deallocation de-
lay. However, the slope of the graphs differ by a constant factor
where llalloc is less affected by the heap size than the others. The
only anomaly in this experiment relative to the other allocators is
the behavior of jemalloc.

Figure 9 shows, again for an increasing deallocation delay, the
total deallocation time which, unlike the total allocation time, de-
creases rather than increases. In this case, however, the slope of the
graphs is nearly the same for all allocators, again except for jemal-
loc. We included the compact allocator in this and other experi-
ments below to show experimentally a performance baseline which

Parameter Value
min. size increasing from 8 to 1024 B
max. size 2 * min. size
max. liveness 1
time quantum 10 MB
benchmark duration 20
access live objects FALSE

Table 3: ACDC configuration for the memory consumption experi-
ment (only non-default values are shown)

 0

 5

 10

 15

 20

 25

 30

 8  16  32  64  128  256  512  1024

a
v
e
ra

g
e
 m

e
m

o
ry

 c
o
n
s
u
m

p
ti
o
n
 i
n
 M

B
(l
o
w

e
r 

is
 b

e
tt
e
r)

object size in bytes

hoard
jemalloc

llalloc
compact

ptmalloc2
ptmalloc3

tbb
tcmalloc

Figure 10: Memory consumption for increasing object sizes. On the
x-axis a value for x denotes the range of object sizes from x to 2x.

may only be reached by mutator-aware allocators. The compact al-
locator allocates and deallocates whole lifetime-size-classes rather
than single objects with a single malloc and free call, respectively.

4.3 Capabilities of ACDC: memory consumption
We are interested in the space overhead introduced by allocators
depending on the size of allocated objects. For this purpose, we
measure average memory consumption for increasing object sizes
(by increasing minimum and maximum sizes in ACDC). Table 3
summarizes the non-default portion of the ACDC configuration for
this experiment.

Figure 10 shows the average memory consumption for increas-
ing object sizes. Note that on the x-axis a value for x actually de-
notes the range of object sizes from x to 2x. ACDC selects actual
sizes randomly from this range. The ptmalloc2 and ptmalloc3 allo-
cators introduce significant space overhead for small objects, pos-
sibly caused by the minimum 16-byte alignment. In contrast, both
allocators introduce up to 20% less overhead for larger objects than
the other allocators in this experiment.

4.4 Capabilities of ACDC: spatial locality
We measure total memory access time for an increasing ratio of list-
based rather than tree-based lifetime-size-classes where objects are
accessed (and deallocated) increasingly in the order in which they
were allocated, i.e., with increasing spatial locality up to sequential
locality. The non-default portion of the ACDC configuration for
this experiment is in Table 4. The results are shown in Figure 11.

The compact allocator provides the best memory layout in terms
of spatial locality because no memory is wasted between objects
and the distance between successively accessed objects in mem-
ory is minimal. A higher ratio of list-based lifetime-size-classes in-
creases spatial locality even more because the chances for the next
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Figure 11: Total memory access time for an increasing ratio of list-
based lifetime-size-classes

Parameter Value
min. size 16 B
max. size 32 B
time quantum 500 KB
list-based ratio increasing from 0% to 100%
write access ratio 0%

Table 4: ACDC configuration for the spatial locality experiment
(only non-default values are shown)

Parameter Value
mode ACDC
number of threads increasing from 1 to 24
min. size 8 B
max. size 2 KB
min. liveness 1
max. liveness 5
time quantum 1 MB
max. time drift 5
access live objects FALSE (without memory access) or

TRUE (with memory access)
shared objects FALSE (thread-local configuration) or

TRUE (shared-objects configuration)

Table 5: ACDC configuration for all multicore scalability experi-
ments (only non-default values are shown)

object to already reside in the same cache line is higher for compact
list-based than for compact tree-based lifetime-size-classes.

For the other allocators, the quality of the memory layout in
terms of spatial locality also increases as the access order ap-
proaches the allocation order. However, jemaloc, llalloc, and tbb
create a memory layout that benefits from spatial locality even more
than ptmalloc2 and tcmalloc.

4.5 Capabilities of ACDC: multicore scalability

We are interested in exposing multicore scalability of allocators in
terms of allocation and deallocation time as well as memory con-
sumption. We benchmark thread-local and shared-objects configu-
rations with and without accessing objects. The non-default portion
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Figure 12: Normalized total allocation time for an increasing num-
ber of threads running the thread-local configuration without mem-
ory access
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Figure 13: Normalized total allocation time for an increasing num-
ber of threads running the thread-local configuration with memory
access

of the ACDC configuration for all four experiments are summarized
in Table 5.

Figure 12 depicts the normalized total allocation time for an in-
creasing number of threads in the thread-local configuration with-
out memory access. This configuration puts high pressure on the
allocator because ACDC performs no other operations than allocat-
ing and deallocating objects. The allocation time increases for all
allocators but the slopes differ significantly. The llalloc allocator
performs best in this experiment showing nearly perfect scalability
(constant normalized allocation time). Also jemalloc scales well,
however showing higher absolute allocation time. On the other
hand, ptmalloc3 seems to suffer from contention on its locks. The
situation with ptmalloc2 is similar, however less dramatic.

Figure 13 shows the data when ACDC performs memory access
in between allocation and deallocation which reduces the pressure
on the allocators. However, both ptmalloc2 and ptmalloc3 still
do not scale but their absolute allocation times are much better,
especially with ptmalloc3. The other allocators all scale well. The
compact allocator, which is built on top of ptmalloc2, shows for
more than 20 threads an increasing allocation time because the
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Figure 14: Normalized total allocation time for an increasing num-
ber of threads running the shared-objects configuration without
memory access
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Figure 15: Normalized total allocation time for an increasing num-
ber of threads running the shared-objects configuration with mem-
ory access

scalability deficiencies of ptmalloc2 dominate the allocation time
of the compact allocator.

Figure 14 depicts the data for the shared-objects configuration
without memory access. Now, threads have to deallocate objects
that were allocated by another thread. The result is higher total allo-
cation time for those allocators that fail to scale in this experiment,
namely ptmalloc2 and ptmalloc3. However, now ptmalloc3 per-
forms better than ptmalloc2. The scalable allocators perform sim-
ilar to the thread-local configuration except tcmalloc which takes
about 80% longer to handle allocations in the shared-object config-
uration than in the thread-local configuration.

When we run ACDC with memory access in the shared-objects
configuration the pressure on the allocators drops again. Figure 15
depicts the data for that configuration. Here, the absolute values
are much better than in the other three configurations because
access to shared objects takes more time than access to unshared
objects. This effect decreases the pressure on the allocators even
more resulting in less contention and lower allocation times.

The normalized total deallocation time of the thread-local con-
figuration without memory access is shown in Figure 16. In this
experiment, llalloc is again the fastest and most scalable alloca-
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Figure 16: Normalized total deallocation time for an increasing
number of threads running the thread-local configuration without
memory access
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Figure 17: Normalized total deallocation time for an increasing
number of threads running the thread-local configuration with
memory access

tor. Note, however, that ptmalloc2 scales nearly perfect in terms
of deallocation time. This shows the advantage of ACDC over the
benchmarks discussed in Section 3. A benchmark that does not sep-
arate allocation and deallocation time is unable to show this phe-
nomenon. The ptmalloc3 allocator does not scale in this experiment
and also tcmalloc and Hoard show a significant increase in deallo-
cation time for more than six and ten threads, respectively.

For Figure 17 ACDC again performs memory access in between
allocation and deallocation. Reducing the pressure on their deallo-
cation routines, all allocators perform well except ptmalloc3 which,
however, produces much better absolute deallocation times than in
the experiment without memory access.

Figure 18 depicts the normalized total deallocation time of the
shared-objects configuration without memory access. Here, ptmal-
loc3 and ptmalloc2 show slight scalability deficiencies. However,
ptmalloc 3 gives much better absolute values than in the thread-
local configuration while ptmalloc2 takes much longer to deallo-
cate shared objects. Still, the overall results are better than for the
thread-local configuration.

Adding memory access to the shared-objects configuration
yields the normalized total deallocation time shown in Figure 19.
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Figure 18: Normalized total deallocation time for an increasing
number of threads running the shared-objects configuration without
memory access
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Figure 19: Normalized total deallocation time for an increasing
number of threads running the shared-objects configuration with
memory access

We observe a similar situation as with the allocation time for the
shared-objects configuration with memory access. Relaxing the
pressure on the deallocation routines results in fast and scalable
deallocation of shared objects even for an increasing number of
threads.

The normalized average memory consumption of this experi-
ment running the thread-local configuration is presented in Fig-
ure 20. The result illustrates the time-space trade-off that the differ-
ent allocators implement. The llalloc allocator, the fastest and most
scalable allocator in this evaluation, shows the highest per-thread
memory consumption while ptmalloc2 and ptmalloc3, which did
not scale in terms of allocation time, are the most space efficient
allocators in this experiment. The tbb, tcmalloc, and jemalloc al-
locators implement a more balanced trade-off between time and
space.

For the shared-objects configuration, Figure 21 shows the nor-
malized average memory consumption. We observe an increasing
per-thread memory consumption in this experiment. Deallocating
objects that were allocated by a different thread can cause blowup
memory fragmentation. This experiment illustrates how effectively
the allocators handle this problem. Apparently, none of the allo-
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Figure 20: Normalized average memory consumption for an in-
creasing number of threads running the thread-local configuration
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Figure 21: Normalized average memory consumption for an in-
creasing number of threads running the shared-objects configura-
tion

Parameter Value
mode false-sharing
number of threads increasing from 1 to 24
min. size 10 B
max. size 10 B
min. liveness 1
max. liveness 1
benchmark duration 30
time quantum 1 million read and write accesses

Table 6: ACDC configuration for the false-sharing experiment
(only non-default values are shown)

cators create unbounded memory consumption. However, the dif-
ferences in the absolute space demands is significant. The tbb al-
locator, for example, consumes twice the amount of memory the
jemalloc allocator consumes.



 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

1 2 3 4 5 6 7 8 10 12 14 16 20 24

n
o
rm

a
liz

e
d
 t
o
ta

l 
a
c
c
e
s
s
 t
im

e
 i
n
 m

ill
is

e
c
o
n
d
s

(l
o
w

e
r 

is
 b

e
tt
e
r)

number of threads

hoard
jemalloc

llalloc
align

ptmalloc2
ptmalloc3

tbb
tcmalloc

Figure 22: Normalized total access time for an increasing number
of threads

4.6 Capabilities of ACDC: false sharing
ACDC allows to run a special mode to expose memory layouts
which are prone to false sharing. In this mode one thread allocates
as many objects as there are threads, one for each thread including
itself. The allocating thread (single producer) passes each object to
a different thread (multiple consumers) and then all threads perform
a large number of read and write accesses to their object until its
lifetime ends. Note that the time quantum in this mode is given in
read and write accesses, i.e., after a given number of accesses to
the objects the thread clocks advance and a new object is allocated
for each thread. Table 6 summarizes the non-default portion of the
ACDC configuration for this experiment.

Figure 22 shows the normalized total access time for an increas-
ing number of threads running ACDC in false-sharing mode. The
baseline is here the align allocator where each object is allocated
in its own cache line avoiding false sharing altogether. For only
one thread, of course, there is no false sharing and all allocators
yield the same access time. For an increasing number of threads,
however, the access time increases up to a factor of five. This ex-
periment in combination with the findings from Figure 11 illustrate
yet another time-space trade-off. The allocators which performed
best in terms of spacial locality, namely tbb, jemalloc, and llalloc
are more prone to introduce false sharing.

5. Conclusion
We have presented ACDC, an open-source benchmark for measur-
ing allocator performance by emulating realistic single- and multi-
threaded mutators. We have presented the basic modes of operation
of ACDC including allocation and deallocation of objects, emula-
tion of heap access patterns, and sharing objects among multiple
threads. In an empirical study involving seven state-of-the-art al-
locators we showed that ACDC is able to expose differences in
their performance in terms of allocation, deallocation, and memory
access throughput as well as memory consumption and multicore
scalability and we also illustrated the time-space trade-offs imple-
mented by the allocators. As part of future work we plan to extend
ACDC for benchmarking managed languages.
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