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Let A be a set and n a natural number. An (algebraic) operation of arity n is a map

f : An → A.

In this text, we focus on operations of arity 2, 1, and 0.

– For n = 2, f : A2 → A is a binary operation and is usually written in infix notation,
using a binary operation symbol like ·, ∗, or +. Hence, instead of f(a1, a2) we write
a1fa2.

– For n = 1, f : A→ A is a unary operation.
– For n = 0, f : A0 → A is a nullary operation or a constant.

An algebra (or an algebraic structure) is a set A, the carrier, together with a set of
operations onA. In addition, the operations may be required to satisfy a set of equations
(identities).

Let us take a closer look at nullary operations and clarify the term “constants”. As
a matter of convention, A0 is a singleton set, usually denoted as {∗}. Hence, a nullary
operation is a function f : {∗} → A and it is uniquely determined by the image f(∗)
which is a distinguished element of A, i.e., a constant.

Groupoids, Semigroups, Monoids, Groups

A groupoid is an algebra with a single binary operation. Hence, it is a set A together
with a binary operation ∗ : A2 → A. We denote such a groupoid by A(∗) making both
the carrier (the set A) and the operation (∗) explicit. A groupoid A(∗) is a semigroup if
the binary operation is associative, i.e., the following identity holds:

∀x, y, z ∈ A. x ∗ (y ∗ z) = (x ∗ y) ∗ z [Associativity] .

A groupoid is commutative if the binary operation is commutative, i.e.,

∀x, y ∈ A. x ∗ y = y ∗ x [Commutativity] .

A groupoid is a commutative semigroup if it is both commutative and associative. A
groupoid is left/right cancellative if the corresponding of the following two implica-
tions holds

∀x, y, z ∈ A. x ∗ y = x ∗ z ⇒ y = z [Left cancellation]
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∀x, y, z ∈ A. y ∗ x = z ∗ x⇒ y = z [Right cancellation]

and it is cancellative if it is both left and right cancellative.

Example 1. Finite groupoids are easily presented by so-called Cayley tables, like the
following groupoid with carrier A = {0, 1, 2}.

∗ 0 1 2

0 1 1 1

1 0 1 2

2 2 2 2

Remark 1. Often, if the binary operation is clear from the context one does not ex-
plicitly write it and writes instead xy for x ∗ y. Moreover, as usual, if quantifiers are
omitted in identities, then the variables are assumed to be universally quantified, e.g.,
commutativity is the law xy = yx (and the variables x and y are implicitly universally
quantified).

We say that a groupoid G(∗) has a left/right unit if the corresponding one of the
following two propositions holds:

∃e′ ∈ G. ∀x ∈ G. e′ ∗ x = x [Left unit]

∃e” ∈ G. ∀x ∈ G. x ∗ e” = x [Right unit] .

It has a unit if

∃e ∈ G. ∀x ∈ G. e ∗ x = x ∗ e = x [Unit] .

Hence a unit is both a left and a right unit.
The groupoid of Example 1 has a left unit 1. A groupoid may have more than one

left unit, or more than one right unit. However, if it has both a right and a left unit, then
it has a unique unit as shown next.

Proposition 1. If a groupoid G(∗) has a left unit l and a right unit r, then l = r is a
unit of G(∗). As a consequence, if a groupoid has a unit, then it has a unique unit.

Proof. Assume l is a left unit of G(∗) and r a right unit. Then we have l = l ∗ r = r,
and clearly this is a unit element. ut

A synonym for a unit is identity element. In a multiplicative groupoid (operation de-
noted by ∗ or ·) with unit, it is common to denote the unit by 1; in an additive groupoid
(operation denoted by +) with unit, it is usual to denote the unit by 0.

A monoid is a semigroup with a unit. To emphesize all operations (also the unit), it
is common to write a monoid as a triple, e.g, (M,+, 0) in additive notation or (M, ·, 1)
in multiplicative notation. A monoid is commutative if the binary operation is commu-
tative; it is (left/right) cancellative if M(·) is a (left/right) cancellative groupoid.
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Example 2. The following are examples of (commutative) monoids: (N, ·, 1), (N,+, 0),
(Z, ·, 1), (Z,+, 0), (Q, ·, 1), (Q,+, 0), (R, ·, 1), (R,+, 0), (P(A),∩, A), (P(A),∪, ∅),
for A a given set, as well as ({T, F},∨, F ) and ({T, F},∧, T ).

The next definition defines one of the most significant algebraic structures, a group.
The theory of groups (and algebra in total) is extremely rich and interesting. For the
purpose of this notes, the definition and few examples suffice.

Definition 1. A group G(·) is a set G together with a binary operation · that satisfies
the following identities

[Associativity] ∀x, y, z ∈ G. x(yz) = (xy)z

[Unit] ∃e ∈ G. ∀x ∈ G. ex = xe = x

[Inverse element] ∀x ∈ G. ∃x−1 ∈ G. xx−1 = x−1x = e.

A group G(·) is commutative or abelian if also ∀x, y ∈ G. xy = yx.

Hence, a group is a monoid in which every element is invertible. Note the order of
the quantifiers in the unit and inverse laws! The inverse elements are unique, as shown
in the following statement.

Proposition 2. Let (M, ·, e) be a monoid. If an element x in M is invertible, then there
is a unique inverse element, i.e., xx′ = x′x = e ∧ xx” = x”x = e⇒ x′ = x”.

Proof. Let x be invertible and x′ and x” be its two inverses, i.e., xx′ = x′x = e and
xx” = x”x = e. Then we have x′ = x′e = x′(xx”) = (x′x)x” = ex” = x”. ut

In order to make all operations explicit in the flavor of universal algebra, the follow-
ing equivalent alternative definition is sometimes preferred.

Definition 2. A group is an algebra (G, ·, (−)−1, e) with a carrier set G and three
operations: a binary operation · : G2 → G, a unary operation (−)−1 : G → G, and
constant (nullary operation) e ∈ G that satisfy the following identities1

[Associativity] x(yz) = (xy)z

[Unit] ex = xe = x

[Inverse element] xx−1 = x−1x = e.

As the notation suggests, the image of an element x ∈ G under the unary operation
(−)−1 is denoted by x−1. In this notation, common elsewhere a well, (−) denotes a
hole to be replaced by an argument. A group (G, ·, (−)−1, e) is commutative or abelian
if also xy = yx.

Groups are everywhere, some well-known ones are listed in the following example.

1 Since existential quantifiers are not needed now having made the operations explicit, universal
quantifiers can be omitted.
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Example 3. Examples of groups are (Z,+,−(−), 0), (Q,+,−(−), 0), (R,+,−(−), 0),
(Q \ {0}, ·, 1/(−), 1), (R \ {0}, ·, 1/(−), 1). Convince yourselves that these are indeed
groups! Note that the monoid (N,+, 0) is not a group, since there are no inverse ele-
ments with respect to addition. The additive inverse of an element x of a group, in e.g.,
(Z,+,−(−), 0), is denoted as usual by −x. The monoid (Z, ·, 1) is not a group since
there are no inverse elements with respect to multiplication.

Let A be a set and let P (A) denote the set of all permutations on A, i.e.,

P (A) = {f : A→ A | f is bijective}.

Then (P (A), ◦, (−)−1, idA) is a group, known as the group of permutations on A.
Convince yourself in this as well. Here, as usual, ◦ denotes function composition, f−1 is
the inverse function of a bijection f , and idA : A→ A is the identity function mapping
every element to itself.

Let A be a set and let + denote the operation of symmetric difference of sets, i.e,
for two subsets B and C of A, we have

B + C = (B \ C) ∪ (C \B) = (B ∩ Cc) ∪ (C ∩Bc).

Then (P(A),+, idP(A), ∅) is a group.

In the sequel we will use both ways to denote a group as convenient. The following
simple property shows the relationship between the unary operation (inverse elements)
and the binary operation of a group.

Proposition 3. Let G(·) be a group. Then for any x, y ∈ G it holds that

(xy)−1 = y−1x−1.

Proof. Let x, y ∈ G. We have, applying associativity and unit law,

(xy)(y−1x−1) = x(yy−1)x−1 = xex−1 = xx−1 = e

and
(y−1x−1)(xy) = y−1(x−1x)y = y−1ey = y−1y = e.

ut

We next show that every group is cancellative.

Proposition 4. Let G(·) be a group, then it is a cancellative groupoid.

Proof. Let x, y, z ∈ G be such that xy = xz. Then y = ey = (x−1x)y = x−1(xy) =
x−1(xz) = (x−1x)z = ez = z. Similarly , one proves right cancellation. ut

Subalgebras, congruences, quotients

Let A be an algebra with a carrier A and a set of operations Σ. A subset S of A is a
subalgebra, if it is closed under all operations of Σ.
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In particular, for a groupoidA(·) a subset S ⊆ A is a subgroupoid, if for all x, y ∈ S
it holds that xy ∈ S.

A subset S ⊆M is a submonoid of a monoid (M, ·, 1) if 1 ∈M and for all x, y ∈ S
it holds that xy ∈ S, i.e., if it contains the unit (closed under the nullary operation) and
is a subgroupoid of M(·).

A subset S ⊆ G is a subgroup of a group (G, ·, (−)−1, e) if it is closed with respect
to multiplication, inverse, and unit, i.e., e ∈ S and for all x, y ∈ S we have x−1 ∈ S
and xy ∈ S.

Example 4. For any algebra A with carrier A, we have A is a subalgebra of itself.
For any monoid (M, ·, 1) the singleton set {1} containing the unit is a submonoid.
Also for any group G(·) the singleton set {e} containing the unit is a subgroup. These
subalgebras are called trivial.

Let A be an algebra with a carrier A and a set of operations Σ. An equivalence
relation R on the carrier A is a congruence of the algebra A if it conforms with all
operations of the algebra, i.e., for any n-ary operation f ∈ Σ the following implication
holds, for any ai, bi ∈ A, 1 ≤ i ≤ n,

a1Rb1 ∧ · · · ∧ anRbn ⇒ f(a1, . . . , an)Rf(b1, . . . , bn).

In particular, for a groupoidA(·), an equivalence relationR onA is a congruence of
the groupoid if for all x, x′, y, y′ ∈ A satisfying xRx′ and yRy′, it holds that xyRx′y′.
Nullary operations have no impact in the definition of a congruence, hence a congruence
of a monoid (M, ·, 1) is any congruence of the groupoid M(·).

Let (G, ·, (−)−1, e) be a group. An equivalence relation R on G is a congruence of
the group if for all x, x′, y, y′ ∈ G, whenever xRx′ and yRy′ it holds that x−1Rx′−1

and xyRx′y′.
Congruences allow for a definition of a quotient algebra: its carrier is the quo-

tient of the carrier consisting of all equivalence classes, and the operations are defined
representative-wise. To illustrate this notion, we define the quotient of a group.

Let G(·) be a group and R a congruence relation. Then G/R(·) is a group as well
where G/R = {[x]R | x ∈ G} and [x]R · [y]R = [xy]R. Actually, this statement is a
proposition that requires a proof. First of all, note that the congruence condition ensures
that the new operation · on G/R (on classes) is well-defined (independent of the choice
of a representative of a class). Then one easily sees that the group identities hold. The
unit here is the class of the unit of G, i.e., [e]R.

Example 5. Consider the additive group of integers Z(+). Each equivalence ≡n (for
n ∈ N) defined as x ≡n y ⇔ n | (x − y) is a congruence of Z(+). It is also a
congruence of the multiplicative monoid (Z, ·, 1). Hence, one can define the quotient
group modulo-n of Z(+) usually denoted Zn(+n). In the same way, one can define the
quotient multiplicative monoid (Zn, ·n, [1]≡n

).

Rings and Fields

Two other algebraic structures are very common with a rather developed theory. These
are rings and fields.
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Definition 3. A ring is an algebraic structure with two binary operations R(+, ·),
called addition and multiplication, respectively, such that R(+) is an abelian group
(with unit 0 and inverse element of an element x denoted by −x) and R(·) is a semi-
group satisfying the following distributive laws of multiplication with respect to addi-
tion:

x(y + z) = xy + xz, (x+ y)z = xz + yz

for all x, y, z ∈ R.

Just like for groups, one can make all operations in a ring explicit and consider it to
be the structure (R,+,−(−), 0, ·).

Example 6. The structure Z(+, ·) of integers with addition and multiplication is a ring.
Also the raionals Q(+, ·) and reals R(+, ·) form rings. Also Zn(+n, ·n) from Exam-
ple 5 is a ring with operations modulo n. Actually, it is the quotient ring of Z(+, ·)
under the congruence ≡n.

Let G(+) be any group in additive notation, with unit 0. Setting xy = 0 for all
x, y ∈ G one obtains a ring G(+, ·) called the zero-ring.

A subset S of a ring R is a subring if 0 ∈ S and for all x, y ∈ S we have −x, x +
y, xy ∈ S.

A ring has a unit 1 if the multiplicative semigroup R(·) has a unit 1, i.e., if (R, ·, 1)
is a monoid.

Proposition 5. If R is a ring with a unit 1 and at least two different elements, then
0 6= 1.

Proof. Assume towards a contradiction that 0 = 1 and let x ∈ R be arbitrary. We first
show that x · 0 = 0 = 0 · x. We have

x · 0 + 0 = x · 0 = x · (0 + 0) = x · 0 + x · 0

and since we are in an additive group, we can cancel out x ·0 and get 0 = x ·0. Similarly
one proves that 0 · x = 0. Now, using that 0 = 1, we have x = x · 1 = x · 0 = 0
contradicting the assumption that R has at least two different elements. ut

A ring is commutative if the multiplicative semigroup R(·) is commutative. A ring
is an integral domain if it is a commutative ring with unit and has no divisors of zero,
i.e., xy = 0⇒ x = 0∨ y = 0. An example of an integral domain is the ring of integers
Z(+, ·). For n ≥ 2, it is not difficult to show that Zn(+, ·) is an integral domain if and
only if n is a prime number.

Definition 4. A field is a commutative ring with a unit in which every non-zero element
is invertible. In other words, an algebraic structure F (+, ·) is a field if F (+) is an
additive group and F \ {0}(·) is a multiplicative group, where as usual 0 denotes the
unit of the additive group.

Example 7. The rationals Q(+, ·) form a field. Also the reals R(+, ·) do. The latter is
a so-called complete field, a condition based on the notion of order on a given field.
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Homomorphisms

A very important notion in algebra (and in other areas of mathematics and computer
science where there is a structure to deal with) is the one of a homomorphism, a struc-
ture preserving mapping. We present the general definition first and instantiate it then
to define groupoid homomorphism, group homomorphism, and ring homomorphism as
examples.

Let A be an algebra with a carrier set A and a set of operations Σ. Let B be another
algebra of the same type (operations “in”Σ as well) with carrierB. Let f be an arbitrary
operation in Σ of arity n. Finally, let fA denote the corresponding operation of A and
fB the one of B. Then a homomorphism is a mapping h : A → B which preserves the
operations, i.e.,

h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an))

for all a1, . . . , an ∈ A.

Remark 2. We never made this explicit so far but, as it is evident of the homomorphism
definition, a (universal) algebra is given by a carrier set and a set of operational symbols
Σ of which each is interpreted by a concrete arity-matching operation on the carrier
set. Most of the notions introduced so far (in particular homomorphism, subalgebra, or
congruence) apply to such a general notion of an algebra. This is the topic of study of
an area called universal algebra. It focuses on abstract notions and results that algebras
have in common.

More concretely, let G1(∗) and G2(·) be two groupoids. A mapping h : G1 → G2

is a (groupoid) homomorphism if and only if for all x, y ∈ G1 we have

h(x ∗ y) = h(x) · h(y).

Regarding Remark 2, we see here that a groupoid is an algebra with one binary opera-
tion that is interpreted by ∗ in G1 and by · in G2.

Let G1(∗, (−)−1, e1) and G2(·, (−)−1, e2) be two groups. A map h : G1 → G2 is
a (group) homomorphism if for all x, y ∈ G1 we have

h(x ∗ y) = h(x) · h(y), h(x−1) = (h(x))−1, and h(e1) = e2.

Proposition 6. Let G1(∗, (−)−1, e1) and G2(·, (−)−1, e2) be two groups. A mapping
h : G1 → G2 is a (group) homomorphism if and only if for all x, y ∈ G1 we have
h(x ∗ y) = h(x) · h(y) and h(e1) = e2.

Proof. The one direction is obvious. For the other direction, assume h : G1 → G2

satisfies h(e1) = e2 and for all x, y ∈ G1 we have h(x ∗ y) = h(x) · h(y). Let x ∈ G1.
Then

h(x) · h(x−1) = h(x ∗ x−1) = h(e1) = e2

and
h(x−1) · h(x) = h(x−1 ∗ x) = h(e1) = e2

showing that (h(x))−1 = h(x−1). Hence, h is a group homomorphism. ut
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At this point we can define a ring homomorphism as follows. Let R1(+1, ·1) and
R(+2, ·2) be two rings. A mapping h : R1 → R2 is a (ring) homomorphism if it is a
group homomorphism from R1(+1) to R2(+2) and a groupoid homomorphism from
R1(·1) to R2(·2). In other words, using Proposition 6, if 01 is the zero of R1(+1, ·1)
and 02 the zero of R2(+2, ·2), then a mapping h : R1 → R2 is a (ring) homomorphism
if for all x, y ∈ R1

h(x+1 y) = h(x) +2 h(y), h(01) = 02, and h(x ·1 y) = h(x) ·2 h(y).

Some special homomorphisms are of particular importance. An algebra homomor-
phism h is a monomorphism (or an embedding) if it is an injective function; it is an
epimorphism if it is a surjective function; and, it is an isomorphism if it is bijective.
Two algebras A and B are isomorphic, notation A ∼= B, if there is an isomorphism
between them.

Example 8. The following two groups G1(∗) and G2(·) are isomorphic. Note that the
unit of G1 is 0 and the unit of G2 is a.

G1(∗) 0 1

0 0 1

1 1 0

G2(·) a b

a a b

b b a

Here, of course, G1 = {0, 1} and G2 = {a, b}. The isomorphism is i : G1 → G2

given by i(0) = a and i(1) = b.

We end these notes with an important isomorphism theorem, which we give without
a proof. The interested reader can do the proof herself (it amounts to checking all con-
ditions) or read it in any standard algebra textbook. The theorem applies to universal
algebra but we just formulate it for groups.

Theorem 1. Let G1(∗, (−)−1, e1) and G2(·, (−)−1, e2) be two groups and h : G1 →
G2 a (group) homomorphism. Then the following three statements hold

(1) ker(h) = {(x, y) | h(x) = h(y)} ⊆ G1 ×G1

is a congruence of G1(∗, (−)−1, e1),

(2) h(G1) is a subgroup of G2, and

(3) G1/ ker(h) ∼= h(G1).

where G1/ ker(h) denotes the quotient group of G1(∗, (−)−1, e1) under the congru-
ence ker(h). Since the operations of a quotient group and a subgroup are canonical,
we do not write them in (3).


