Coalgebra for Computer Scientists www.cs.uni-salzburg/~anas/teaching/Coalgebra

> Lecturer: Ana Sokolova University of Salzburg

> > TU Vienna, 15.3.2012

with an informal introduction

 \odot coalgebras $S \rightarrow \dots S \dots$

 and discussed a bit where do such structures appear in computer science

with an informal introduction space

 \odot coalgebras $S \rightarrow | \dots S \dots |$

and discussed a bit where do such structures appear in computer science

Saturday, March 17, 2012

TU Vienna 15.3.2012

with an informal introduction space

 \odot coalgebras $S \rightarrow | \dots S \dots$

 and discussed a bit where do such structures appear in computer science



type, interface

transition structure
with an informal introduction

 \odot coalgebras $S \xrightarrow{\sim} | \dots S \dots |_{\sim}$

type, interface

and discussed a bit where do such structures appear in computer science

A very concrete coalgebra

 $\mathtt{next}: A^{\infty} \longrightarrow \{\bot\} \cup A \times A^{\infty}$

TU Vienna 15.3.2012

A very concrete coalgebra

 $\texttt{next}: A^{\infty} \longrightarrow \{\bot\} \cup A \times A^{\infty}$

TU Vienna 15.3.2012

 $A^{\infty} = A^* \cup A^{\mathbb{N}}$

A very concrete coalgebra

 $\texttt{next}: A^{\infty} \longrightarrow \{\bot\} \cup A \times A^{\infty}$

 $A^{\infty} = A^* \cup A^{\mathbb{N}}$

TU Vienna 15.3.2012

A very concrete coalgebra

 $\texttt{next}: A^{\infty} \longrightarrow \{\bot\} \cup A \times A^{\infty}$

 $\mathtt{next}(\sigma) = \left\{ \begin{array}{ll} \bot & \text{if } \sigma = \varepsilon \\ (a, \sigma') & \text{if } \sigma = a \cdot \sigma', \ a \in A, \ \sigma' \in A^{\infty} \end{array} \right.$



TU Vienna 15.3.2012

 $A^{\infty} = A^* \cup A^{\mathbb{N}}$

type $\{\bot\} \cup A \times (-)$

A very concrete coalgebra

 $\texttt{next}: A^{\infty} \longrightarrow \{\bot\} \cup A \times A^{\infty}$

 $\mathtt{next}(\sigma) = \begin{cases} \bot & \text{if } \sigma = \varepsilon \\ (a, \sigma') & \text{if } \sigma = a \cdot \sigma', \ a \in A, \ \sigma' \in A^{\infty} \end{cases}$

More general, a coalgebra of type $\{\bot\} \cup A \times (-)$

TU Vienna 15.3.2012

 $A^{\infty} = A^* \cup A^{\mathbb{N}}$

type $\{\bot\} \cup A \times (-)$

A very concrete coalgebra

 $\texttt{next}: A^{\infty} \longrightarrow \{\bot\} \cup A \times A^{\infty}$

 $\mathtt{next}(\sigma) = \left\{ \begin{array}{ll} \bot & \text{if } \sigma = \varepsilon \\ (a, \sigma') & \text{if } \sigma = a \cdot \sigma', \ a \in A, \ \sigma' \in A^{\infty} \end{array} \right.$

More general, a coalgebra of type $\{\bot\} \cup A \times (-)$

 $c \colon S \longrightarrow \{\bot\} \cup A \times S$

TU Vienna 15.3.2012

 $A^{\infty} = A^* \cup A^{\mathbb{N}}$

type $\{\bot\} \cup A \times (-)$

A very concrete coalgebra

 $\texttt{next}: A^{\infty} \longrightarrow \{\bot\} \cup A \times A^{\infty}$

 $\mathtt{next}(\sigma) = \left\{ \begin{array}{ll} \bot & \text{if } \sigma = \varepsilon \\ (a, \sigma') & \text{if } \sigma = a \cdot \sigma', \ a \in A, \ \sigma' \in A^{\infty} \end{array} \right.$

More general, a coalgebra of type $\{\bot\} \cup A \times (-)$

 $c: S \longrightarrow \{\bot\} \cup A \times S$

behaves

 $\begin{array}{ll} x \nrightarrow & \text{if } c(x) = \bot \\ x \stackrel{a}{\rightarrow} x' & \text{if } c(x) = (a, x') \end{array}$

Ana Sokolova

Saturday, March 17, 2012

TU Vienna 15.3.2012

 $A^{\infty} = A^* \cup A^{\mathbb{N}}$

type $\{\bot\} \cup A \times (-)$

A very concrete coalgebra

 $\texttt{next}: A^{\infty} \longrightarrow \{\bot\} \cup A \times A^{\infty}$

 $\mathtt{next}(\sigma) = \left\{ \begin{array}{ll} \bot & \text{if } \sigma = \varepsilon \\ (a, \sigma') & \text{if } \sigma = a \cdot \sigma', \ a \in A, \ \sigma' \in A^{\infty} \end{array} \right.$

More general, a coalgebra of type $\{\bot\} \cup A imes (-)$

 $c: S \longrightarrow \{\bot\} \cup A \times S$

behaves

 $\begin{array}{ll} x \nrightarrow & \text{if } c(x) = \bot \\ x \stackrel{a}{\to} x' & \text{if } c(x) = (a, x') \end{array}$

Example: • \xrightarrow{a} • \xrightarrow{b} • \xrightarrow{b}

 $A^{\infty} = A^* \cup A^{\mathbb{N}}$

type $\{\bot\} \cup A \times (-)$

TU Vienna 15.3.2012

Saturday, March 17, 2012

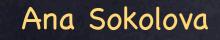
Ana Sokolova

Proposition The coalgebra next is final.

TU Vienna 15.3.2012

Proposition The coalgebra next is final.

For any other coalgebra $c: S \longrightarrow \{\bot\} \cup A \times S$ there is a unique homomorphism $beh_c: S \to A^{\infty}$ into it



TU Vienna 15.3.2012

Proposition The coalgebra next is final.

For any other coalgebra $c: S \longrightarrow \{\bot\} \cup A \times S$ there is a unique homomorphism $beh_c: S \to A^{\infty}$ into it

(1) $c(x) = \bot$ \Rightarrow $next(beh_c(x)) = \bot$ (2) c(x) = (a, x') \Rightarrow $next(beh_c(x)) = (a, beh_c(x'))$

TU Vienna 15.3.2012

Proposition The coalgebra next is final.

For any other coalgebra $c: S \longrightarrow \{\bot\} \cup A \times S$ there is a unique homomorphism $beh_c: S \to A^{\infty}$ into it

(1) $c(x) = \bot$ \Rightarrow $next(beh_c(x)) = \bot$ (2) c(x) = (a, x') \Rightarrow $next(beh_c(x)) = (a, beh_c(x'))$

Ana Sokolova

TU Vienna 15.3.2012

Proposition The coalgebra next is final.

For any other coalgebra $c: S \longrightarrow \{\bot\} \cup A \times S$ there is a unique homomorphism $beh_c: S \to A^{\infty}$ into it

(1) $c(x) = \bot$ \Rightarrow $next(beh_c(x)) = \bot$ (2) c(x) = (a, x') \Rightarrow $next(beh_c(x)) = (a, beh_c(x'))$

Vienna 15.3.2012

Ana Sokolova

Coinduction definition principle

Proposition The coalgebra next is final.

For any other coalgebra $c: S \longrightarrow \{\bot\} \cup A \times S$ there is a unique homomorphism $beh_c: S \to A^{\infty}$ into it

(1) $c(x) = \bot$ \Rightarrow $next(beh_c(x)) = \bot$ (2) c(x) = (a, x') \Rightarrow $next(beh_c(x)) = (a, beh_c(x'))$

Vienna 15.3.2012

Ana Sokolova

Coinduction definition principle Coinduction proof principle

Proposition The coalgebra next is final.

For any other coalgebra $c: S \longrightarrow \{\bot\} \cup A \times S$ there is a unique homomorphism $beh_c: S \to A^{\infty}$ into it

(1) $c(x) = \bot$ \Rightarrow $next(beh_c(x)) = \bot$ (2) c(x) = (a, x') \Rightarrow $next(beh_c(x)) = (a, beh_c(x'))$

Vienna 15.3.2012

Ana Sokolova